MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lo1mul Structured version   Visualization version   GIF version

Theorem lo1mul 14557
Description: The product of an eventually upper bounded function and a positive eventually upper bounded function is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
o1add2.1 ((𝜑𝑥𝐴) → 𝐵𝑉)
o1add2.2 ((𝜑𝑥𝐴) → 𝐶𝑉)
lo1add.3 (𝜑 → (𝑥𝐴𝐵) ∈ ≤𝑂(1))
lo1add.4 (𝜑 → (𝑥𝐴𝐶) ∈ ≤𝑂(1))
lo1mul.5 ((𝜑𝑥𝐴) → 0 ≤ 𝐵)
Assertion
Ref Expression
lo1mul (𝜑 → (𝑥𝐴 ↦ (𝐵 · 𝐶)) ∈ ≤𝑂(1))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem lo1mul
Dummy variables 𝑚 𝑐 𝑛 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lo1add.3 . 2 (𝜑 → (𝑥𝐴𝐵) ∈ ≤𝑂(1))
2 lo1add.4 . 2 (𝜑 → (𝑥𝐴𝐶) ∈ ≤𝑂(1))
3 reeanv 3245 . . . 4 (∃𝑚 ∈ ℝ ∃𝑛 ∈ ℝ (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛)) ↔ (∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚) ∧ ∃𝑛 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛)))
4 o1add2.1 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐵𝑉)
54ralrimiva 3104 . . . . . . . . . 10 (𝜑 → ∀𝑥𝐴 𝐵𝑉)
6 dmmptg 5793 . . . . . . . . . 10 (∀𝑥𝐴 𝐵𝑉 → dom (𝑥𝐴𝐵) = 𝐴)
75, 6syl 17 . . . . . . . . 9 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
8 lo1dm 14449 . . . . . . . . . 10 ((𝑥𝐴𝐵) ∈ ≤𝑂(1) → dom (𝑥𝐴𝐵) ⊆ ℝ)
91, 8syl 17 . . . . . . . . 9 (𝜑 → dom (𝑥𝐴𝐵) ⊆ ℝ)
107, 9eqsstr3d 3781 . . . . . . . 8 (𝜑𝐴 ⊆ ℝ)
1110adantr 472 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → 𝐴 ⊆ ℝ)
12 rexanre 14285 . . . . . . 7 (𝐴 ⊆ ℝ → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚𝐶𝑛)) ↔ (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛))))
1311, 12syl 17 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚𝐶𝑛)) ↔ (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛))))
14 simprl 811 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → 𝑚 ∈ ℝ)
15 simprr 813 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → 𝑛 ∈ ℝ)
16 0re 10232 . . . . . . . . . 10 0 ∈ ℝ
17 ifcl 4274 . . . . . . . . . 10 ((𝑛 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ 𝑛, 𝑛, 0) ∈ ℝ)
1815, 16, 17sylancl 697 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → if(0 ≤ 𝑛, 𝑛, 0) ∈ ℝ)
1914, 18remulcld 10262 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → (𝑚 · if(0 ≤ 𝑛, 𝑛, 0)) ∈ ℝ)
20 simplrr 820 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → 𝑛 ∈ ℝ)
21 max2 12211 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ 𝑛 ∈ ℝ) → 𝑛 ≤ if(0 ≤ 𝑛, 𝑛, 0))
2216, 20, 21sylancr 698 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → 𝑛 ≤ if(0 ≤ 𝑛, 𝑛, 0))
23 o1add2.2 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → 𝐶𝑉)
2423, 2lo1mptrcl 14551 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
2524adantlr 753 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → 𝐶 ∈ ℝ)
2620, 16, 17sylancl 697 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → if(0 ≤ 𝑛, 𝑛, 0) ∈ ℝ)
27 letr 10323 . . . . . . . . . . . . 13 ((𝐶 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ if(0 ≤ 𝑛, 𝑛, 0) ∈ ℝ) → ((𝐶𝑛𝑛 ≤ if(0 ≤ 𝑛, 𝑛, 0)) → 𝐶 ≤ if(0 ≤ 𝑛, 𝑛, 0)))
2825, 20, 26, 27syl3anc 1477 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → ((𝐶𝑛𝑛 ≤ if(0 ≤ 𝑛, 𝑛, 0)) → 𝐶 ≤ if(0 ≤ 𝑛, 𝑛, 0)))
2922, 28mpan2d 712 . . . . . . . . . . 11 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → (𝐶𝑛𝐶 ≤ if(0 ≤ 𝑛, 𝑛, 0)))
304, 1lo1mptrcl 14551 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
3130adantlr 753 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
32 lo1mul.5 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 0 ≤ 𝐵)
3332adantlr 753 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → 0 ≤ 𝐵)
3431, 33jca 555 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
35 simplrl 819 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → 𝑚 ∈ ℝ)
36 max1 12209 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ 𝑛 ∈ ℝ) → 0 ≤ if(0 ≤ 𝑛, 𝑛, 0))
3716, 20, 36sylancr 698 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → 0 ≤ if(0 ≤ 𝑛, 𝑛, 0))
3826, 37jca 555 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → (if(0 ≤ 𝑛, 𝑛, 0) ∈ ℝ ∧ 0 ≤ if(0 ≤ 𝑛, 𝑛, 0)))
39 lemul12b 11072 . . . . . . . . . . . 12 ((((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝑚 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ (if(0 ≤ 𝑛, 𝑛, 0) ∈ ℝ ∧ 0 ≤ if(0 ≤ 𝑛, 𝑛, 0)))) → ((𝐵𝑚𝐶 ≤ if(0 ≤ 𝑛, 𝑛, 0)) → (𝐵 · 𝐶) ≤ (𝑚 · if(0 ≤ 𝑛, 𝑛, 0))))
4034, 35, 25, 38, 39syl22anc 1478 . . . . . . . . . . 11 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → ((𝐵𝑚𝐶 ≤ if(0 ≤ 𝑛, 𝑛, 0)) → (𝐵 · 𝐶) ≤ (𝑚 · if(0 ≤ 𝑛, 𝑛, 0))))
4129, 40sylan2d 500 . . . . . . . . . 10 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → ((𝐵𝑚𝐶𝑛) → (𝐵 · 𝐶) ≤ (𝑚 · if(0 ≤ 𝑛, 𝑛, 0))))
4241imim2d 57 . . . . . . . . 9 (((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑥𝐴) → ((𝑐𝑥 → (𝐵𝑚𝐶𝑛)) → (𝑐𝑥 → (𝐵 · 𝐶) ≤ (𝑚 · if(0 ≤ 𝑛, 𝑛, 0)))))
4342ralimdva 3100 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → (∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚𝐶𝑛)) → ∀𝑥𝐴 (𝑐𝑥 → (𝐵 · 𝐶) ≤ (𝑚 · if(0 ≤ 𝑛, 𝑛, 0)))))
44 breq2 4808 . . . . . . . . . . 11 (𝑝 = (𝑚 · if(0 ≤ 𝑛, 𝑛, 0)) → ((𝐵 · 𝐶) ≤ 𝑝 ↔ (𝐵 · 𝐶) ≤ (𝑚 · if(0 ≤ 𝑛, 𝑛, 0))))
4544imbi2d 329 . . . . . . . . . 10 (𝑝 = (𝑚 · if(0 ≤ 𝑛, 𝑛, 0)) → ((𝑐𝑥 → (𝐵 · 𝐶) ≤ 𝑝) ↔ (𝑐𝑥 → (𝐵 · 𝐶) ≤ (𝑚 · if(0 ≤ 𝑛, 𝑛, 0)))))
4645ralbidv 3124 . . . . . . . . 9 (𝑝 = (𝑚 · if(0 ≤ 𝑛, 𝑛, 0)) → (∀𝑥𝐴 (𝑐𝑥 → (𝐵 · 𝐶) ≤ 𝑝) ↔ ∀𝑥𝐴 (𝑐𝑥 → (𝐵 · 𝐶) ≤ (𝑚 · if(0 ≤ 𝑛, 𝑛, 0)))))
4746rspcev 3449 . . . . . . . 8 (((𝑚 · if(0 ≤ 𝑛, 𝑛, 0)) ∈ ℝ ∧ ∀𝑥𝐴 (𝑐𝑥 → (𝐵 · 𝐶) ≤ (𝑚 · if(0 ≤ 𝑛, 𝑛, 0)))) → ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵 · 𝐶) ≤ 𝑝))
4819, 43, 47syl6an 569 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → (∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚𝐶𝑛)) → ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵 · 𝐶) ≤ 𝑝)))
4948reximdv 3154 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚𝐶𝑛)) → ∃𝑐 ∈ ℝ ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵 · 𝐶) ≤ 𝑝)))
5013, 49sylbird 250 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → ((∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛)) → ∃𝑐 ∈ ℝ ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵 · 𝐶) ≤ 𝑝)))
5150rexlimdvva 3176 . . . 4 (𝜑 → (∃𝑚 ∈ ℝ ∃𝑛 ∈ ℝ (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛)) → ∃𝑐 ∈ ℝ ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵 · 𝐶) ≤ 𝑝)))
523, 51syl5bir 233 . . 3 (𝜑 → ((∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚) ∧ ∃𝑛 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛)) → ∃𝑐 ∈ ℝ ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵 · 𝐶) ≤ 𝑝)))
5310, 30ello1mpt 14451 . . . . 5 (𝜑 → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ ∃𝑐 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚)))
54 rexcom 3237 . . . . 5 (∃𝑐 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚) ↔ ∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚))
5553, 54syl6bb 276 . . . 4 (𝜑 → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ ∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚)))
5610, 24ello1mpt 14451 . . . . 5 (𝜑 → ((𝑥𝐴𝐶) ∈ ≤𝑂(1) ↔ ∃𝑐 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛)))
57 rexcom 3237 . . . . 5 (∃𝑐 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛) ↔ ∃𝑛 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛))
5856, 57syl6bb 276 . . . 4 (𝜑 → ((𝑥𝐴𝐶) ∈ ≤𝑂(1) ↔ ∃𝑛 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛)))
5955, 58anbi12d 749 . . 3 (𝜑 → (((𝑥𝐴𝐵) ∈ ≤𝑂(1) ∧ (𝑥𝐴𝐶) ∈ ≤𝑂(1)) ↔ (∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑚) ∧ ∃𝑛 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐶𝑛))))
6030, 24remulcld 10262 . . . 4 ((𝜑𝑥𝐴) → (𝐵 · 𝐶) ∈ ℝ)
6110, 60ello1mpt 14451 . . 3 (𝜑 → ((𝑥𝐴 ↦ (𝐵 · 𝐶)) ∈ ≤𝑂(1) ↔ ∃𝑐 ∈ ℝ ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵 · 𝐶) ≤ 𝑝)))
6252, 59, 613imtr4d 283 . 2 (𝜑 → (((𝑥𝐴𝐵) ∈ ≤𝑂(1) ∧ (𝑥𝐴𝐶) ∈ ≤𝑂(1)) → (𝑥𝐴 ↦ (𝐵 · 𝐶)) ∈ ≤𝑂(1)))
631, 2, 62mp2and 717 1 (𝜑 → (𝑥𝐴 ↦ (𝐵 · 𝐶)) ∈ ≤𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  wral 3050  wrex 3051  wss 3715  ifcif 4230   class class class wbr 4804  cmpt 4881  dom cdm 5266  (class class class)co 6813  cr 10127  0cc0 10128   · cmul 10133  cle 10267  ≤𝑂(1)clo1 14417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-po 5187  df-so 5188  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-er 7911  df-pm 8026  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-ico 12374  df-lo1 14421
This theorem is referenced by:  lo1mul2  14558  pntrlog2bndlem4  25468  pntrlog2bndlem5  25469
  Copyright terms: Public domain W3C validator