MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lo1bdd2 Structured version   Visualization version   GIF version

Theorem lo1bdd2 14452
Description: If an eventually bounded function is bounded on every interval 𝐴 ∩ (-∞, 𝑦) by a function 𝑀(𝑦), then the function is bounded on the whole domain. (Contributed by Mario Carneiro, 9-Apr-2016.)
Hypotheses
Ref Expression
lo1bdd2.1 (𝜑𝐴 ⊆ ℝ)
lo1bdd2.2 (𝜑𝐶 ∈ ℝ)
lo1bdd2.3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
lo1bdd2.4 (𝜑 → (𝑥𝐴𝐵) ∈ ≤𝑂(1))
lo1bdd2.5 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝐶𝑦)) → 𝑀 ∈ ℝ)
lo1bdd2.6 (((𝜑𝑥𝐴) ∧ ((𝑦 ∈ ℝ ∧ 𝐶𝑦) ∧ 𝑥 < 𝑦)) → 𝐵𝑀)
Assertion
Ref Expression
lo1bdd2 (𝜑 → ∃𝑚 ∈ ℝ ∀𝑥𝐴 𝐵𝑚)
Distinct variable groups:   𝑥,𝑚,𝑦,𝐴   𝐵,𝑚,𝑦   𝑥,𝐶,𝑦   𝜑,𝑥,𝑦   𝑚,𝑀,𝑥
Allowed substitution hints:   𝜑(𝑚)   𝐵(𝑥)   𝐶(𝑚)   𝑀(𝑦)

Proof of Theorem lo1bdd2
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 lo1bdd2.4 . . 3 (𝜑 → (𝑥𝐴𝐵) ∈ ≤𝑂(1))
2 lo1bdd2.1 . . . 4 (𝜑𝐴 ⊆ ℝ)
3 lo1bdd2.3 . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
4 lo1bdd2.2 . . . 4 (𝜑𝐶 ∈ ℝ)
52, 3, 4ello1mpt2 14450 . . 3 (𝜑 → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ (𝐶[,)+∞)∃𝑛 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑛)))
61, 5mpbid 222 . 2 (𝜑 → ∃𝑦 ∈ (𝐶[,)+∞)∃𝑛 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑛))
7 elicopnf 12460 . . . . . . . . . . 11 (𝐶 ∈ ℝ → (𝑦 ∈ (𝐶[,)+∞) ↔ (𝑦 ∈ ℝ ∧ 𝐶𝑦)))
84, 7syl 17 . . . . . . . . . 10 (𝜑 → (𝑦 ∈ (𝐶[,)+∞) ↔ (𝑦 ∈ ℝ ∧ 𝐶𝑦)))
98biimpa 502 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐶[,)+∞)) → (𝑦 ∈ ℝ ∧ 𝐶𝑦))
10 lo1bdd2.5 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝐶𝑦)) → 𝑀 ∈ ℝ)
119, 10syldan 488 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐶[,)+∞)) → 𝑀 ∈ ℝ)
1211ad2antrr 764 . . . . . . 7 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ (𝑛 ∈ ℝ ∧ ∀𝑥𝐴 (𝑦𝑥𝐵𝑛))) ∧ 𝑛𝑀) → 𝑀 ∈ ℝ)
13 simplrl 819 . . . . . . 7 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ (𝑛 ∈ ℝ ∧ ∀𝑥𝐴 (𝑦𝑥𝐵𝑛))) ∧ ¬ 𝑛𝑀) → 𝑛 ∈ ℝ)
1412, 13ifclda 4262 . . . . . 6 (((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ (𝑛 ∈ ℝ ∧ ∀𝑥𝐴 (𝑦𝑥𝐵𝑛))) → if(𝑛𝑀, 𝑀, 𝑛) ∈ ℝ)
152ad2antrr 764 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) → 𝐴 ⊆ ℝ)
1615sselda 3742 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
179simpld 477 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐶[,)+∞)) → 𝑦 ∈ ℝ)
1817ad2antrr 764 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ)
1916, 18ltnled 10374 . . . . . . . . . 10 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → (𝑥 < 𝑦 ↔ ¬ 𝑦𝑥))
20 lo1bdd2.6 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝐴) ∧ ((𝑦 ∈ ℝ ∧ 𝐶𝑦) ∧ 𝑥 < 𝑦)) → 𝐵𝑀)
2120expr 644 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ ℝ ∧ 𝐶𝑦)) → (𝑥 < 𝑦𝐵𝑀))
2221an32s 881 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝐶𝑦)) ∧ 𝑥𝐴) → (𝑥 < 𝑦𝐵𝑀))
2322ex 449 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝐶𝑦)) → (𝑥𝐴 → (𝑥 < 𝑦𝐵𝑀)))
249, 23syldan 488 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐶[,)+∞)) → (𝑥𝐴 → (𝑥 < 𝑦𝐵𝑀)))
2524imp 444 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑥𝐴) → (𝑥 < 𝑦𝐵𝑀))
2625adantlr 753 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → (𝑥 < 𝑦𝐵𝑀))
27 simplr 809 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → 𝑛 ∈ ℝ)
2811ad2antrr 764 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → 𝑀 ∈ ℝ)
29 max2 12209 . . . . . . . . . . . . 13 ((𝑛 ∈ ℝ ∧ 𝑀 ∈ ℝ) → 𝑀 ≤ if(𝑛𝑀, 𝑀, 𝑛))
3027, 28, 29syl2anc 696 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → 𝑀 ≤ if(𝑛𝑀, 𝑀, 𝑛))
31 simpll 807 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) → 𝜑)
3231, 3sylan 489 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
3311ad3antrrr 768 . . . . . . . . . . . . . 14 (((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑛𝑀) → 𝑀 ∈ ℝ)
34 simpllr 817 . . . . . . . . . . . . . 14 (((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) ∧ ¬ 𝑛𝑀) → 𝑛 ∈ ℝ)
3533, 34ifclda 4262 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → if(𝑛𝑀, 𝑀, 𝑛) ∈ ℝ)
36 letr 10321 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ if(𝑛𝑀, 𝑀, 𝑛) ∈ ℝ) → ((𝐵𝑀𝑀 ≤ if(𝑛𝑀, 𝑀, 𝑛)) → 𝐵 ≤ if(𝑛𝑀, 𝑀, 𝑛)))
3732, 28, 35, 36syl3anc 1477 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐵𝑀𝑀 ≤ if(𝑛𝑀, 𝑀, 𝑛)) → 𝐵 ≤ if(𝑛𝑀, 𝑀, 𝑛)))
3830, 37mpan2d 712 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → (𝐵𝑀𝐵 ≤ if(𝑛𝑀, 𝑀, 𝑛)))
3926, 38syld 47 . . . . . . . . . 10 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → (𝑥 < 𝑦𝐵 ≤ if(𝑛𝑀, 𝑀, 𝑛)))
4019, 39sylbird 250 . . . . . . . . 9 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → (¬ 𝑦𝑥𝐵 ≤ if(𝑛𝑀, 𝑀, 𝑛)))
41 max1 12207 . . . . . . . . . . 11 ((𝑛 ∈ ℝ ∧ 𝑀 ∈ ℝ) → 𝑛 ≤ if(𝑛𝑀, 𝑀, 𝑛))
4227, 28, 41syl2anc 696 . . . . . . . . . 10 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → 𝑛 ≤ if(𝑛𝑀, 𝑀, 𝑛))
43 letr 10321 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ if(𝑛𝑀, 𝑀, 𝑛) ∈ ℝ) → ((𝐵𝑛𝑛 ≤ if(𝑛𝑀, 𝑀, 𝑛)) → 𝐵 ≤ if(𝑛𝑀, 𝑀, 𝑛)))
4432, 27, 35, 43syl3anc 1477 . . . . . . . . . 10 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐵𝑛𝑛 ≤ if(𝑛𝑀, 𝑀, 𝑛)) → 𝐵 ≤ if(𝑛𝑀, 𝑀, 𝑛)))
4542, 44mpan2d 712 . . . . . . . . 9 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → (𝐵𝑛𝐵 ≤ if(𝑛𝑀, 𝑀, 𝑛)))
4640, 45jad 174 . . . . . . . 8 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → ((𝑦𝑥𝐵𝑛) → 𝐵 ≤ if(𝑛𝑀, 𝑀, 𝑛)))
4746ralimdva 3098 . . . . . . 7 (((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) → (∀𝑥𝐴 (𝑦𝑥𝐵𝑛) → ∀𝑥𝐴 𝐵 ≤ if(𝑛𝑀, 𝑀, 𝑛)))
4847impr 650 . . . . . 6 (((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ (𝑛 ∈ ℝ ∧ ∀𝑥𝐴 (𝑦𝑥𝐵𝑛))) → ∀𝑥𝐴 𝐵 ≤ if(𝑛𝑀, 𝑀, 𝑛))
49 breq2 4806 . . . . . . . 8 (𝑚 = if(𝑛𝑀, 𝑀, 𝑛) → (𝐵𝑚𝐵 ≤ if(𝑛𝑀, 𝑀, 𝑛)))
5049ralbidv 3122 . . . . . . 7 (𝑚 = if(𝑛𝑀, 𝑀, 𝑛) → (∀𝑥𝐴 𝐵𝑚 ↔ ∀𝑥𝐴 𝐵 ≤ if(𝑛𝑀, 𝑀, 𝑛)))
5150rspcev 3447 . . . . . 6 ((if(𝑛𝑀, 𝑀, 𝑛) ∈ ℝ ∧ ∀𝑥𝐴 𝐵 ≤ if(𝑛𝑀, 𝑀, 𝑛)) → ∃𝑚 ∈ ℝ ∀𝑥𝐴 𝐵𝑚)
5214, 48, 51syl2anc 696 . . . . 5 (((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ (𝑛 ∈ ℝ ∧ ∀𝑥𝐴 (𝑦𝑥𝐵𝑛))) → ∃𝑚 ∈ ℝ ∀𝑥𝐴 𝐵𝑚)
5352expr 644 . . . 4 (((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) → (∀𝑥𝐴 (𝑦𝑥𝐵𝑛) → ∃𝑚 ∈ ℝ ∀𝑥𝐴 𝐵𝑚))
5453rexlimdva 3167 . . 3 ((𝜑𝑦 ∈ (𝐶[,)+∞)) → (∃𝑛 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑛) → ∃𝑚 ∈ ℝ ∀𝑥𝐴 𝐵𝑚))
5554rexlimdva 3167 . 2 (𝜑 → (∃𝑦 ∈ (𝐶[,)+∞)∃𝑛 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑛) → ∃𝑚 ∈ ℝ ∀𝑥𝐴 𝐵𝑚))
566, 55mpd 15 1 (𝜑 → ∃𝑚 ∈ ℝ ∀𝑥𝐴 𝐵𝑚)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1630  wcel 2137  wral 3048  wrex 3049  wss 3713  ifcif 4228   class class class wbr 4802  cmpt 4879  (class class class)co 6811  cr 10125  +∞cpnf 10261   < clt 10264  cle 10265  [,)cico 12368  ≤𝑂(1)clo1 14415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1986  ax-6 2052  ax-7 2088  ax-8 2139  ax-9 2146  ax-10 2166  ax-11 2181  ax-12 2194  ax-13 2389  ax-ext 2738  ax-sep 4931  ax-nul 4939  ax-pow 4990  ax-pr 5053  ax-un 7112  ax-cnex 10182  ax-resscn 10183  ax-pre-lttri 10200  ax-pre-lttrn 10201
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2045  df-eu 2609  df-mo 2610  df-clab 2745  df-cleq 2751  df-clel 2754  df-nfc 2889  df-ne 2931  df-nel 3034  df-ral 3053  df-rex 3054  df-rab 3057  df-v 3340  df-sbc 3575  df-csb 3673  df-dif 3716  df-un 3718  df-in 3720  df-ss 3727  df-nul 4057  df-if 4229  df-pw 4302  df-sn 4320  df-pr 4322  df-op 4326  df-uni 4587  df-br 4803  df-opab 4863  df-mpt 4880  df-id 5172  df-po 5185  df-so 5186  df-xp 5270  df-rel 5271  df-cnv 5272  df-co 5273  df-dm 5274  df-rn 5275  df-res 5276  df-ima 5277  df-iota 6010  df-fun 6049  df-fn 6050  df-f 6051  df-f1 6052  df-fo 6053  df-f1o 6054  df-fv 6055  df-ov 6814  df-oprab 6815  df-mpt2 6816  df-er 7909  df-pm 8024  df-en 8120  df-dom 8121  df-sdom 8122  df-pnf 10266  df-mnf 10267  df-xr 10268  df-ltxr 10269  df-le 10270  df-ico 12372  df-lo1 14419
This theorem is referenced by:  lo1bddrp  14453  o1bdd2  14469
  Copyright terms: Public domain W3C validator