MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lo1bdd Structured version   Visualization version   GIF version

Theorem lo1bdd 14459
Description: The defining property of an eventually upper bounded function. (Contributed by Mario Carneiro, 26-May-2016.)
Assertion
Ref Expression
lo1bdd ((𝐹 ∈ ≤𝑂(1) ∧ 𝐹:𝐴⟶ℝ) → ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ 𝑚))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐴   𝑚,𝐹,𝑥,𝑦

Proof of Theorem lo1bdd
StepHypRef Expression
1 simpl 468 . 2 ((𝐹 ∈ ≤𝑂(1) ∧ 𝐹:𝐴⟶ℝ) → 𝐹 ∈ ≤𝑂(1))
2 simpr 471 . . 3 ((𝐹 ∈ ≤𝑂(1) ∧ 𝐹:𝐴⟶ℝ) → 𝐹:𝐴⟶ℝ)
3 fdm 6191 . . . . 5 (𝐹:𝐴⟶ℝ → dom 𝐹 = 𝐴)
43adantl 467 . . . 4 ((𝐹 ∈ ≤𝑂(1) ∧ 𝐹:𝐴⟶ℝ) → dom 𝐹 = 𝐴)
5 lo1dm 14458 . . . . 5 (𝐹 ∈ ≤𝑂(1) → dom 𝐹 ⊆ ℝ)
65adantr 466 . . . 4 ((𝐹 ∈ ≤𝑂(1) ∧ 𝐹:𝐴⟶ℝ) → dom 𝐹 ⊆ ℝ)
74, 6eqsstr3d 3789 . . 3 ((𝐹 ∈ ≤𝑂(1) ∧ 𝐹:𝐴⟶ℝ) → 𝐴 ⊆ ℝ)
8 ello12 14455 . . 3 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (𝐹 ∈ ≤𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ 𝑚)))
92, 7, 8syl2anc 573 . 2 ((𝐹 ∈ ≤𝑂(1) ∧ 𝐹:𝐴⟶ℝ) → (𝐹 ∈ ≤𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ 𝑚)))
101, 9mpbid 222 1 ((𝐹 ∈ ≤𝑂(1) ∧ 𝐹:𝐴⟶ℝ) → ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ 𝑚))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wral 3061  wrex 3062  wss 3723   class class class wbr 4786  dom cdm 5249  wf 6027  cfv 6031  cr 10137  cle 10277  ≤𝑂(1)clo1 14426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-pre-lttri 10212  ax-pre-lttrn 10213
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-po 5170  df-so 5171  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-er 7896  df-pm 8012  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-ico 12386  df-lo1 14430
This theorem is referenced by:  lo1res  14498
  Copyright terms: Public domain W3C validator