![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lnrot2 | Structured version Visualization version GIF version |
Description: Rotating the points defining a line. Part of Theorem 4.11 of [Schwabhauser] p. 34. (Contributed by Thierry Arnoux, 3-Apr-2019.) |
Ref | Expression |
---|---|
btwnlng1.p | ⊢ 𝑃 = (Base‘𝐺) |
btwnlng1.i | ⊢ 𝐼 = (Itv‘𝐺) |
btwnlng1.l | ⊢ 𝐿 = (LineG‘𝐺) |
btwnlng1.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
btwnlng1.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
btwnlng1.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
btwnlng1.z | ⊢ (𝜑 → 𝑍 ∈ 𝑃) |
btwnlng1.d | ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
lnrot2.1 | ⊢ (𝜑 → 𝑋 ∈ (𝑌𝐿𝑍)) |
lnrot2.2 | ⊢ (𝜑 → 𝑌 ≠ 𝑍) |
Ref | Expression |
---|---|
lnrot2 | ⊢ (𝜑 → 𝑍 ∈ (𝑋𝐿𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lnrot2.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ (𝑌𝐿𝑍)) | |
2 | btwnlng1.p | . . . . . 6 ⊢ 𝑃 = (Base‘𝐺) | |
3 | eqid 2771 | . . . . . 6 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
4 | btwnlng1.i | . . . . . 6 ⊢ 𝐼 = (Itv‘𝐺) | |
5 | btwnlng1.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
6 | btwnlng1.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
7 | btwnlng1.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
8 | btwnlng1.z | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ 𝑃) | |
9 | 2, 3, 4, 5, 6, 7, 8 | tgbtwncomb 25605 | . . . . 5 ⊢ (𝜑 → (𝑋 ∈ (𝑌𝐼𝑍) ↔ 𝑋 ∈ (𝑍𝐼𝑌))) |
10 | biidd 252 | . . . . 5 ⊢ (𝜑 → (𝑌 ∈ (𝑋𝐼𝑍) ↔ 𝑌 ∈ (𝑋𝐼𝑍))) | |
11 | 2, 3, 4, 5, 6, 8, 7 | tgbtwncomb 25605 | . . . . 5 ⊢ (𝜑 → (𝑍 ∈ (𝑌𝐼𝑋) ↔ 𝑍 ∈ (𝑋𝐼𝑌))) |
12 | 9, 10, 11 | 3orbi123d 1546 | . . . 4 ⊢ (𝜑 → ((𝑋 ∈ (𝑌𝐼𝑍) ∨ 𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑍 ∈ (𝑌𝐼𝑋)) ↔ (𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑍 ∈ (𝑋𝐼𝑌)))) |
13 | 3orrot 1076 | . . . 4 ⊢ ((𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)) ↔ (𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑍 ∈ (𝑋𝐼𝑌))) | |
14 | 12, 13 | syl6bbr 278 | . . 3 ⊢ (𝜑 → ((𝑋 ∈ (𝑌𝐼𝑍) ∨ 𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑍 ∈ (𝑌𝐼𝑋)) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))) |
15 | btwnlng1.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
16 | lnrot2.2 | . . . 4 ⊢ (𝜑 → 𝑌 ≠ 𝑍) | |
17 | 2, 15, 4, 5, 6, 8, 16, 7 | tgellng 25669 | . . 3 ⊢ (𝜑 → (𝑋 ∈ (𝑌𝐿𝑍) ↔ (𝑋 ∈ (𝑌𝐼𝑍) ∨ 𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑍 ∈ (𝑌𝐼𝑋)))) |
18 | btwnlng1.d | . . . 4 ⊢ (𝜑 → 𝑋 ≠ 𝑌) | |
19 | 2, 15, 4, 5, 7, 6, 18, 8 | tgellng 25669 | . . 3 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))) |
20 | 14, 17, 19 | 3bitr4d 300 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝑌𝐿𝑍) ↔ 𝑍 ∈ (𝑋𝐿𝑌))) |
21 | 1, 20 | mpbid 222 | 1 ⊢ (𝜑 → 𝑍 ∈ (𝑋𝐿𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1070 = wceq 1631 ∈ wcel 2145 ≠ wne 2943 ‘cfv 6031 (class class class)co 6793 Basecbs 16064 distcds 16158 TarskiGcstrkg 25550 Itvcitv 25556 LineGclng 25557 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-iota 5994 df-fun 6033 df-fv 6039 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-trkgc 25568 df-trkgb 25569 df-trkgcb 25570 df-trkg 25573 |
This theorem is referenced by: coltr 25763 mideulem2 25847 |
Copyright terms: Public domain | W3C validator |