HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnopunilem2 Structured version   Visualization version   GIF version

Theorem lnopunilem2 29210
Description: Lemma for lnopunii 29211. (Contributed by NM, 12-May-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnopunilem.1 𝑇 ∈ LinOp
lnopunilem.2 𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)
lnopunilem.3 𝐴 ∈ ℋ
lnopunilem.4 𝐵 ∈ ℋ
Assertion
Ref Expression
lnopunilem2 ((𝑇𝐴) ·ih (𝑇𝐵)) = (𝐴 ·ih 𝐵)
Distinct variable group:   𝑥,𝑇
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem lnopunilem2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fvoveq1 6816 . . . . 5 (𝑦 = if(𝑦 ∈ ℂ, 𝑦, 0) → (ℜ‘(𝑦 · ((𝑇𝐴) ·ih (𝑇𝐵)))) = (ℜ‘(if(𝑦 ∈ ℂ, 𝑦, 0) · ((𝑇𝐴) ·ih (𝑇𝐵)))))
2 fvoveq1 6816 . . . . 5 (𝑦 = if(𝑦 ∈ ℂ, 𝑦, 0) → (ℜ‘(𝑦 · (𝐴 ·ih 𝐵))) = (ℜ‘(if(𝑦 ∈ ℂ, 𝑦, 0) · (𝐴 ·ih 𝐵))))
31, 2eqeq12d 2786 . . . 4 (𝑦 = if(𝑦 ∈ ℂ, 𝑦, 0) → ((ℜ‘(𝑦 · ((𝑇𝐴) ·ih (𝑇𝐵)))) = (ℜ‘(𝑦 · (𝐴 ·ih 𝐵))) ↔ (ℜ‘(if(𝑦 ∈ ℂ, 𝑦, 0) · ((𝑇𝐴) ·ih (𝑇𝐵)))) = (ℜ‘(if(𝑦 ∈ ℂ, 𝑦, 0) · (𝐴 ·ih 𝐵)))))
4 lnopunilem.1 . . . . 5 𝑇 ∈ LinOp
5 lnopunilem.2 . . . . 5 𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)
6 lnopunilem.3 . . . . 5 𝐴 ∈ ℋ
7 lnopunilem.4 . . . . 5 𝐵 ∈ ℋ
8 0cn 10234 . . . . . 6 0 ∈ ℂ
98elimel 4289 . . . . 5 if(𝑦 ∈ ℂ, 𝑦, 0) ∈ ℂ
104, 5, 6, 7, 9lnopunilem1 29209 . . . 4 (ℜ‘(if(𝑦 ∈ ℂ, 𝑦, 0) · ((𝑇𝐴) ·ih (𝑇𝐵)))) = (ℜ‘(if(𝑦 ∈ ℂ, 𝑦, 0) · (𝐴 ·ih 𝐵)))
113, 10dedth 4278 . . 3 (𝑦 ∈ ℂ → (ℜ‘(𝑦 · ((𝑇𝐴) ·ih (𝑇𝐵)))) = (ℜ‘(𝑦 · (𝐴 ·ih 𝐵))))
1211rgen 3071 . 2 𝑦 ∈ ℂ (ℜ‘(𝑦 · ((𝑇𝐴) ·ih (𝑇𝐵)))) = (ℜ‘(𝑦 · (𝐴 ·ih 𝐵)))
134lnopfi 29168 . . . . . 6 𝑇: ℋ⟶ ℋ
1413ffvelrni 6501 . . . . 5 (𝐴 ∈ ℋ → (𝑇𝐴) ∈ ℋ)
156, 14ax-mp 5 . . . 4 (𝑇𝐴) ∈ ℋ
1613ffvelrni 6501 . . . . 5 (𝐵 ∈ ℋ → (𝑇𝐵) ∈ ℋ)
177, 16ax-mp 5 . . . 4 (𝑇𝐵) ∈ ℋ
1815, 17hicli 28278 . . 3 ((𝑇𝐴) ·ih (𝑇𝐵)) ∈ ℂ
196, 7hicli 28278 . . 3 (𝐴 ·ih 𝐵) ∈ ℂ
20 recan 14284 . . 3 ((((𝑇𝐴) ·ih (𝑇𝐵)) ∈ ℂ ∧ (𝐴 ·ih 𝐵) ∈ ℂ) → (∀𝑦 ∈ ℂ (ℜ‘(𝑦 · ((𝑇𝐴) ·ih (𝑇𝐵)))) = (ℜ‘(𝑦 · (𝐴 ·ih 𝐵))) ↔ ((𝑇𝐴) ·ih (𝑇𝐵)) = (𝐴 ·ih 𝐵)))
2118, 19, 20mp2an 672 . 2 (∀𝑦 ∈ ℂ (ℜ‘(𝑦 · ((𝑇𝐴) ·ih (𝑇𝐵)))) = (ℜ‘(𝑦 · (𝐴 ·ih 𝐵))) ↔ ((𝑇𝐴) ·ih (𝑇𝐵)) = (𝐴 ·ih 𝐵))
2212, 21mpbi 220 1 ((𝑇𝐴) ·ih (𝑇𝐵)) = (𝐴 ·ih 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 196   = wceq 1631  wcel 2145  wral 3061  ifcif 4225  cfv 6031  (class class class)co 6793  cc 10136  0cc0 10138   · cmul 10143  cre 14045  chil 28116   ·ih csp 28119  normcno 28120  LinOpclo 28144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216  ax-hilex 28196  ax-hfvadd 28197  ax-hv0cl 28200  ax-hfvmul 28202  ax-hvmul0 28207  ax-hfi 28276  ax-his1 28279  ax-his2 28280  ax-his3 28281  ax-his4 28282
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-map 8011  df-en 8110  df-dom 8111  df-sdom 8112  df-sup 8504  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-n0 11495  df-z 11580  df-uz 11889  df-rp 12036  df-seq 13009  df-exp 13068  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-hnorm 28165  df-lnop 29040
This theorem is referenced by:  lnopunii  29211
  Copyright terms: Public domain W3C validator