![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > lnopsubi | Structured version Visualization version GIF version |
Description: Subtraction property for a linear Hilbert space operator. (Contributed by NM, 1-Jul-2005.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lnopl.1 | ⊢ 𝑇 ∈ LinOp |
Ref | Expression |
---|---|
lnopsubi | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 −ℎ 𝐵)) = ((𝑇‘𝐴) −ℎ (𝑇‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neg1cn 11336 | . . 3 ⊢ -1 ∈ ℂ | |
2 | lnopl.1 | . . . 4 ⊢ 𝑇 ∈ LinOp | |
3 | 2 | lnopaddmuli 29162 | . . 3 ⊢ ((-1 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 +ℎ (-1 ·ℎ 𝐵))) = ((𝑇‘𝐴) +ℎ (-1 ·ℎ (𝑇‘𝐵)))) |
4 | 1, 3 | mp3an1 1560 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 +ℎ (-1 ·ℎ 𝐵))) = ((𝑇‘𝐴) +ℎ (-1 ·ℎ (𝑇‘𝐵)))) |
5 | hvsubval 28203 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵))) | |
6 | 5 | fveq2d 6357 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 −ℎ 𝐵)) = (𝑇‘(𝐴 +ℎ (-1 ·ℎ 𝐵)))) |
7 | 2 | lnopfi 29158 | . . . 4 ⊢ 𝑇: ℋ⟶ ℋ |
8 | 7 | ffvelrni 6522 | . . 3 ⊢ (𝐴 ∈ ℋ → (𝑇‘𝐴) ∈ ℋ) |
9 | 7 | ffvelrni 6522 | . . 3 ⊢ (𝐵 ∈ ℋ → (𝑇‘𝐵) ∈ ℋ) |
10 | hvsubval 28203 | . . 3 ⊢ (((𝑇‘𝐴) ∈ ℋ ∧ (𝑇‘𝐵) ∈ ℋ) → ((𝑇‘𝐴) −ℎ (𝑇‘𝐵)) = ((𝑇‘𝐴) +ℎ (-1 ·ℎ (𝑇‘𝐵)))) | |
11 | 8, 9, 10 | syl2an 495 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝑇‘𝐴) −ℎ (𝑇‘𝐵)) = ((𝑇‘𝐴) +ℎ (-1 ·ℎ (𝑇‘𝐵)))) |
12 | 4, 6, 11 | 3eqtr4d 2804 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 −ℎ 𝐵)) = ((𝑇‘𝐴) −ℎ (𝑇‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ‘cfv 6049 (class class class)co 6814 ℂcc 10146 1c1 10149 -cneg 10479 ℋchil 28106 +ℎ cva 28107 ·ℎ csm 28108 −ℎ cmv 28112 LinOpclo 28134 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-hilex 28186 ax-hfvadd 28187 ax-hvass 28189 ax-hv0cl 28190 ax-hvaddid 28191 ax-hfvmul 28192 ax-hvmulid 28193 ax-hvdistr2 28196 ax-hvmul0 28197 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-po 5187 df-so 5188 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-er 7913 df-map 8027 df-en 8124 df-dom 8125 df-sdom 8126 df-pnf 10288 df-mnf 10289 df-ltxr 10291 df-sub 10480 df-neg 10481 df-hvsub 28158 df-lnop 29030 |
This theorem is referenced by: lnopsubmuli 29164 lnopmulsubi 29165 hoddii 29178 lnopeq0lem1 29194 lnophmlem2 29206 lnopconi 29223 |
Copyright terms: Public domain | W3C validator |