![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > lnopeqi | Structured version Visualization version GIF version |
Description: Two linear Hilbert space operators are equal iff their quadratic forms are equal. (Contributed by NM, 27-Jul-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lnopeq.1 | ⊢ 𝑇 ∈ LinOp |
lnopeq.2 | ⊢ 𝑈 ∈ LinOp |
Ref | Expression |
---|---|
lnopeqi | ⊢ (∀𝑥 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑥) = ((𝑈‘𝑥) ·ih 𝑥) ↔ 𝑇 = 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lnopeq.1 | . . . . . . . 8 ⊢ 𝑇 ∈ LinOp | |
2 | 1 | lnopfi 29158 | . . . . . . 7 ⊢ 𝑇: ℋ⟶ ℋ |
3 | 2 | ffvelrni 6522 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → (𝑇‘𝑥) ∈ ℋ) |
4 | hicl 28267 | . . . . . 6 ⊢ (((𝑇‘𝑥) ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇‘𝑥) ·ih 𝑥) ∈ ℂ) | |
5 | 3, 4 | mpancom 706 | . . . . 5 ⊢ (𝑥 ∈ ℋ → ((𝑇‘𝑥) ·ih 𝑥) ∈ ℂ) |
6 | lnopeq.2 | . . . . . . . 8 ⊢ 𝑈 ∈ LinOp | |
7 | 6 | lnopfi 29158 | . . . . . . 7 ⊢ 𝑈: ℋ⟶ ℋ |
8 | 7 | ffvelrni 6522 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → (𝑈‘𝑥) ∈ ℋ) |
9 | hicl 28267 | . . . . . 6 ⊢ (((𝑈‘𝑥) ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑈‘𝑥) ·ih 𝑥) ∈ ℂ) | |
10 | 8, 9 | mpancom 706 | . . . . 5 ⊢ (𝑥 ∈ ℋ → ((𝑈‘𝑥) ·ih 𝑥) ∈ ℂ) |
11 | 5, 10 | subeq0ad 10614 | . . . 4 ⊢ (𝑥 ∈ ℋ → ((((𝑇‘𝑥) ·ih 𝑥) − ((𝑈‘𝑥) ·ih 𝑥)) = 0 ↔ ((𝑇‘𝑥) ·ih 𝑥) = ((𝑈‘𝑥) ·ih 𝑥))) |
12 | hodval 28931 | . . . . . . . 8 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇 −op 𝑈)‘𝑥) = ((𝑇‘𝑥) −ℎ (𝑈‘𝑥))) | |
13 | 2, 7, 12 | mp3an12 1563 | . . . . . . 7 ⊢ (𝑥 ∈ ℋ → ((𝑇 −op 𝑈)‘𝑥) = ((𝑇‘𝑥) −ℎ (𝑈‘𝑥))) |
14 | 13 | oveq1d 6829 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → (((𝑇 −op 𝑈)‘𝑥) ·ih 𝑥) = (((𝑇‘𝑥) −ℎ (𝑈‘𝑥)) ·ih 𝑥)) |
15 | id 22 | . . . . . . 7 ⊢ (𝑥 ∈ ℋ → 𝑥 ∈ ℋ) | |
16 | his2sub 28279 | . . . . . . 7 ⊢ (((𝑇‘𝑥) ∈ ℋ ∧ (𝑈‘𝑥) ∈ ℋ ∧ 𝑥 ∈ ℋ) → (((𝑇‘𝑥) −ℎ (𝑈‘𝑥)) ·ih 𝑥) = (((𝑇‘𝑥) ·ih 𝑥) − ((𝑈‘𝑥) ·ih 𝑥))) | |
17 | 3, 8, 15, 16 | syl3anc 1477 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → (((𝑇‘𝑥) −ℎ (𝑈‘𝑥)) ·ih 𝑥) = (((𝑇‘𝑥) ·ih 𝑥) − ((𝑈‘𝑥) ·ih 𝑥))) |
18 | 14, 17 | eqtr2d 2795 | . . . . 5 ⊢ (𝑥 ∈ ℋ → (((𝑇‘𝑥) ·ih 𝑥) − ((𝑈‘𝑥) ·ih 𝑥)) = (((𝑇 −op 𝑈)‘𝑥) ·ih 𝑥)) |
19 | 18 | eqeq1d 2762 | . . . 4 ⊢ (𝑥 ∈ ℋ → ((((𝑇‘𝑥) ·ih 𝑥) − ((𝑈‘𝑥) ·ih 𝑥)) = 0 ↔ (((𝑇 −op 𝑈)‘𝑥) ·ih 𝑥) = 0)) |
20 | 11, 19 | bitr3d 270 | . . 3 ⊢ (𝑥 ∈ ℋ → (((𝑇‘𝑥) ·ih 𝑥) = ((𝑈‘𝑥) ·ih 𝑥) ↔ (((𝑇 −op 𝑈)‘𝑥) ·ih 𝑥) = 0)) |
21 | 20 | ralbiia 3117 | . 2 ⊢ (∀𝑥 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑥) = ((𝑈‘𝑥) ·ih 𝑥) ↔ ∀𝑥 ∈ ℋ (((𝑇 −op 𝑈)‘𝑥) ·ih 𝑥) = 0) |
22 | 1, 6 | lnophdi 29191 | . . 3 ⊢ (𝑇 −op 𝑈) ∈ LinOp |
23 | 22 | lnopeq0i 29196 | . 2 ⊢ (∀𝑥 ∈ ℋ (((𝑇 −op 𝑈)‘𝑥) ·ih 𝑥) = 0 ↔ (𝑇 −op 𝑈) = 0hop ) |
24 | 2, 7 | hosubeq0i 29015 | . 2 ⊢ ((𝑇 −op 𝑈) = 0hop ↔ 𝑇 = 𝑈) |
25 | 21, 23, 24 | 3bitri 286 | 1 ⊢ (∀𝑥 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑥) = ((𝑈‘𝑥) ·ih 𝑥) ↔ 𝑇 = 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 = wceq 1632 ∈ wcel 2139 ∀wral 3050 ⟶wf 6045 ‘cfv 6049 (class class class)co 6814 ℂcc 10146 0cc0 10148 − cmin 10478 ℋchil 28106 ·ih csp 28109 −ℎ cmv 28112 −op chod 28127 0hop ch0o 28130 LinOpclo 28134 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-inf2 8713 ax-cc 9469 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 ax-pre-sup 10226 ax-addf 10227 ax-mulf 10228 ax-hilex 28186 ax-hfvadd 28187 ax-hvcom 28188 ax-hvass 28189 ax-hv0cl 28190 ax-hvaddid 28191 ax-hfvmul 28192 ax-hvmulid 28193 ax-hvmulass 28194 ax-hvdistr1 28195 ax-hvdistr2 28196 ax-hvmul0 28197 ax-hfi 28266 ax-his1 28269 ax-his2 28270 ax-his3 28271 ax-his4 28272 ax-hcompl 28389 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-iin 4675 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-se 5226 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-isom 6058 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-of 7063 df-om 7232 df-1st 7334 df-2nd 7335 df-supp 7465 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-1o 7730 df-2o 7731 df-oadd 7734 df-omul 7735 df-er 7913 df-map 8027 df-pm 8028 df-ixp 8077 df-en 8124 df-dom 8125 df-sdom 8126 df-fin 8127 df-fsupp 8443 df-fi 8484 df-sup 8515 df-inf 8516 df-oi 8582 df-card 8975 df-acn 8978 df-cda 9202 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-div 10897 df-nn 11233 df-2 11291 df-3 11292 df-4 11293 df-5 11294 df-6 11295 df-7 11296 df-8 11297 df-9 11298 df-n0 11505 df-z 11590 df-dec 11706 df-uz 11900 df-q 12002 df-rp 12046 df-xneg 12159 df-xadd 12160 df-xmul 12161 df-ioo 12392 df-ico 12394 df-icc 12395 df-fz 12540 df-fzo 12680 df-fl 12807 df-seq 13016 df-exp 13075 df-hash 13332 df-cj 14058 df-re 14059 df-im 14060 df-sqrt 14194 df-abs 14195 df-clim 14438 df-rlim 14439 df-sum 14636 df-struct 16081 df-ndx 16082 df-slot 16083 df-base 16085 df-sets 16086 df-ress 16087 df-plusg 16176 df-mulr 16177 df-starv 16178 df-sca 16179 df-vsca 16180 df-ip 16181 df-tset 16182 df-ple 16183 df-ds 16186 df-unif 16187 df-hom 16188 df-cco 16189 df-rest 16305 df-topn 16306 df-0g 16324 df-gsum 16325 df-topgen 16326 df-pt 16327 df-prds 16330 df-xrs 16384 df-qtop 16389 df-imas 16390 df-xps 16392 df-mre 16468 df-mrc 16469 df-acs 16471 df-mgm 17463 df-sgrp 17505 df-mnd 17516 df-submnd 17557 df-mulg 17762 df-cntz 17970 df-cmn 18415 df-psmet 19960 df-xmet 19961 df-met 19962 df-bl 19963 df-mopn 19964 df-fbas 19965 df-fg 19966 df-cnfld 19969 df-top 20921 df-topon 20938 df-topsp 20959 df-bases 20972 df-cld 21045 df-ntr 21046 df-cls 21047 df-nei 21124 df-cn 21253 df-cnp 21254 df-lm 21255 df-haus 21341 df-tx 21587 df-hmeo 21780 df-fil 21871 df-fm 21963 df-flim 21964 df-flf 21965 df-xms 22346 df-ms 22347 df-tms 22348 df-cfil 23273 df-cau 23274 df-cmet 23275 df-grpo 27677 df-gid 27678 df-ginv 27679 df-gdiv 27680 df-ablo 27729 df-vc 27744 df-nv 27777 df-va 27780 df-ba 27781 df-sm 27782 df-0v 27783 df-vs 27784 df-nmcv 27785 df-ims 27786 df-dip 27886 df-ssp 27907 df-ph 27998 df-cbn 28049 df-hnorm 28155 df-hba 28156 df-hvsub 28158 df-hlim 28159 df-hcau 28160 df-sh 28394 df-ch 28408 df-oc 28439 df-ch0 28440 df-shs 28497 df-pjh 28584 df-hosum 28919 df-homul 28920 df-hodif 28921 df-h0op 28937 df-lnop 29030 |
This theorem is referenced by: lnopeq 29198 |
Copyright terms: Public domain | W3C validator |