Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnopeqi Structured version   Visualization version   GIF version

Theorem lnopeqi 29197
 Description: Two linear Hilbert space operators are equal iff their quadratic forms are equal. (Contributed by NM, 27-Jul-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnopeq.1 𝑇 ∈ LinOp
lnopeq.2 𝑈 ∈ LinOp
Assertion
Ref Expression
lnopeqi (∀𝑥 ∈ ℋ ((𝑇𝑥) ·ih 𝑥) = ((𝑈𝑥) ·ih 𝑥) ↔ 𝑇 = 𝑈)
Distinct variable groups:   𝑥,𝑇   𝑥,𝑈

Proof of Theorem lnopeqi
StepHypRef Expression
1 lnopeq.1 . . . . . . . 8 𝑇 ∈ LinOp
21lnopfi 29158 . . . . . . 7 𝑇: ℋ⟶ ℋ
32ffvelrni 6522 . . . . . 6 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℋ)
4 hicl 28267 . . . . . 6 (((𝑇𝑥) ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) ·ih 𝑥) ∈ ℂ)
53, 4mpancom 706 . . . . 5 (𝑥 ∈ ℋ → ((𝑇𝑥) ·ih 𝑥) ∈ ℂ)
6 lnopeq.2 . . . . . . . 8 𝑈 ∈ LinOp
76lnopfi 29158 . . . . . . 7 𝑈: ℋ⟶ ℋ
87ffvelrni 6522 . . . . . 6 (𝑥 ∈ ℋ → (𝑈𝑥) ∈ ℋ)
9 hicl 28267 . . . . . 6 (((𝑈𝑥) ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑈𝑥) ·ih 𝑥) ∈ ℂ)
108, 9mpancom 706 . . . . 5 (𝑥 ∈ ℋ → ((𝑈𝑥) ·ih 𝑥) ∈ ℂ)
115, 10subeq0ad 10614 . . . 4 (𝑥 ∈ ℋ → ((((𝑇𝑥) ·ih 𝑥) − ((𝑈𝑥) ·ih 𝑥)) = 0 ↔ ((𝑇𝑥) ·ih 𝑥) = ((𝑈𝑥) ·ih 𝑥)))
12 hodval 28931 . . . . . . . 8 ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇op 𝑈)‘𝑥) = ((𝑇𝑥) − (𝑈𝑥)))
132, 7, 12mp3an12 1563 . . . . . . 7 (𝑥 ∈ ℋ → ((𝑇op 𝑈)‘𝑥) = ((𝑇𝑥) − (𝑈𝑥)))
1413oveq1d 6829 . . . . . 6 (𝑥 ∈ ℋ → (((𝑇op 𝑈)‘𝑥) ·ih 𝑥) = (((𝑇𝑥) − (𝑈𝑥)) ·ih 𝑥))
15 id 22 . . . . . . 7 (𝑥 ∈ ℋ → 𝑥 ∈ ℋ)
16 his2sub 28279 . . . . . . 7 (((𝑇𝑥) ∈ ℋ ∧ (𝑈𝑥) ∈ ℋ ∧ 𝑥 ∈ ℋ) → (((𝑇𝑥) − (𝑈𝑥)) ·ih 𝑥) = (((𝑇𝑥) ·ih 𝑥) − ((𝑈𝑥) ·ih 𝑥)))
173, 8, 15, 16syl3anc 1477 . . . . . 6 (𝑥 ∈ ℋ → (((𝑇𝑥) − (𝑈𝑥)) ·ih 𝑥) = (((𝑇𝑥) ·ih 𝑥) − ((𝑈𝑥) ·ih 𝑥)))
1814, 17eqtr2d 2795 . . . . 5 (𝑥 ∈ ℋ → (((𝑇𝑥) ·ih 𝑥) − ((𝑈𝑥) ·ih 𝑥)) = (((𝑇op 𝑈)‘𝑥) ·ih 𝑥))
1918eqeq1d 2762 . . . 4 (𝑥 ∈ ℋ → ((((𝑇𝑥) ·ih 𝑥) − ((𝑈𝑥) ·ih 𝑥)) = 0 ↔ (((𝑇op 𝑈)‘𝑥) ·ih 𝑥) = 0))
2011, 19bitr3d 270 . . 3 (𝑥 ∈ ℋ → (((𝑇𝑥) ·ih 𝑥) = ((𝑈𝑥) ·ih 𝑥) ↔ (((𝑇op 𝑈)‘𝑥) ·ih 𝑥) = 0))
2120ralbiia 3117 . 2 (∀𝑥 ∈ ℋ ((𝑇𝑥) ·ih 𝑥) = ((𝑈𝑥) ·ih 𝑥) ↔ ∀𝑥 ∈ ℋ (((𝑇op 𝑈)‘𝑥) ·ih 𝑥) = 0)
221, 6lnophdi 29191 . . 3 (𝑇op 𝑈) ∈ LinOp
2322lnopeq0i 29196 . 2 (∀𝑥 ∈ ℋ (((𝑇op 𝑈)‘𝑥) ·ih 𝑥) = 0 ↔ (𝑇op 𝑈) = 0hop )
242, 7hosubeq0i 29015 . 2 ((𝑇op 𝑈) = 0hop𝑇 = 𝑈)
2521, 23, 243bitri 286 1 (∀𝑥 ∈ ℋ ((𝑇𝑥) ·ih 𝑥) = ((𝑈𝑥) ·ih 𝑥) ↔ 𝑇 = 𝑈)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 196   = wceq 1632   ∈ wcel 2139  ∀wral 3050  ⟶wf 6045  ‘cfv 6049  (class class class)co 6814  ℂcc 10146  0cc0 10148   − cmin 10478   ℋchil 28106   ·ih csp 28109   −ℎ cmv 28112   −op chod 28127   0hop ch0o 28130  LinOpclo 28134 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cc 9469  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226  ax-addf 10227  ax-mulf 10228  ax-hilex 28186  ax-hfvadd 28187  ax-hvcom 28188  ax-hvass 28189  ax-hv0cl 28190  ax-hvaddid 28191  ax-hfvmul 28192  ax-hvmulid 28193  ax-hvmulass 28194  ax-hvdistr1 28195  ax-hvdistr2 28196  ax-hvmul0 28197  ax-hfi 28266  ax-his1 28269  ax-his2 28270  ax-his3 28271  ax-his4 28272  ax-hcompl 28389 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-of 7063  df-om 7232  df-1st 7334  df-2nd 7335  df-supp 7465  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-2o 7731  df-oadd 7734  df-omul 7735  df-er 7913  df-map 8027  df-pm 8028  df-ixp 8077  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-fsupp 8443  df-fi 8484  df-sup 8515  df-inf 8516  df-oi 8582  df-card 8975  df-acn 8978  df-cda 9202  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-z 11590  df-dec 11706  df-uz 11900  df-q 12002  df-rp 12046  df-xneg 12159  df-xadd 12160  df-xmul 12161  df-ioo 12392  df-ico 12394  df-icc 12395  df-fz 12540  df-fzo 12680  df-fl 12807  df-seq 13016  df-exp 13075  df-hash 13332  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-clim 14438  df-rlim 14439  df-sum 14636  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-mulr 16177  df-starv 16178  df-sca 16179  df-vsca 16180  df-ip 16181  df-tset 16182  df-ple 16183  df-ds 16186  df-unif 16187  df-hom 16188  df-cco 16189  df-rest 16305  df-topn 16306  df-0g 16324  df-gsum 16325  df-topgen 16326  df-pt 16327  df-prds 16330  df-xrs 16384  df-qtop 16389  df-imas 16390  df-xps 16392  df-mre 16468  df-mrc 16469  df-acs 16471  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-submnd 17557  df-mulg 17762  df-cntz 17970  df-cmn 18415  df-psmet 19960  df-xmet 19961  df-met 19962  df-bl 19963  df-mopn 19964  df-fbas 19965  df-fg 19966  df-cnfld 19969  df-top 20921  df-topon 20938  df-topsp 20959  df-bases 20972  df-cld 21045  df-ntr 21046  df-cls 21047  df-nei 21124  df-cn 21253  df-cnp 21254  df-lm 21255  df-haus 21341  df-tx 21587  df-hmeo 21780  df-fil 21871  df-fm 21963  df-flim 21964  df-flf 21965  df-xms 22346  df-ms 22347  df-tms 22348  df-cfil 23273  df-cau 23274  df-cmet 23275  df-grpo 27677  df-gid 27678  df-ginv 27679  df-gdiv 27680  df-ablo 27729  df-vc 27744  df-nv 27777  df-va 27780  df-ba 27781  df-sm 27782  df-0v 27783  df-vs 27784  df-nmcv 27785  df-ims 27786  df-dip 27886  df-ssp 27907  df-ph 27998  df-cbn 28049  df-hnorm 28155  df-hba 28156  df-hvsub 28158  df-hlim 28159  df-hcau 28160  df-sh 28394  df-ch 28408  df-oc 28439  df-ch0 28440  df-shs 28497  df-pjh 28584  df-hosum 28919  df-homul 28920  df-hodif 28921  df-h0op 28937  df-lnop 29030 This theorem is referenced by:  lnopeq  29198
 Copyright terms: Public domain W3C validator