![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > lnopconi | Structured version Visualization version GIF version |
Description: A condition equivalent to "𝑇 is continuous" when 𝑇 is linear. Theorem 3.5(iii) of [Beran] p. 99. (Contributed by NM, 7-Feb-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lnopcon.1 | ⊢ 𝑇 ∈ LinOp |
Ref | Expression |
---|---|
lnopconi | ⊢ (𝑇 ∈ ContOp ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (normℎ‘(𝑇‘𝑦)) ≤ (𝑥 · (normℎ‘𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lnopcon.1 | . . 3 ⊢ 𝑇 ∈ LinOp | |
2 | nmcopex 29197 | . . 3 ⊢ ((𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp) → (normop‘𝑇) ∈ ℝ) | |
3 | 1, 2 | mpan 708 | . 2 ⊢ (𝑇 ∈ ContOp → (normop‘𝑇) ∈ ℝ) |
4 | nmcoplb 29198 | . . 3 ⊢ ((𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp ∧ 𝑦 ∈ ℋ) → (normℎ‘(𝑇‘𝑦)) ≤ ((normop‘𝑇) · (normℎ‘𝑦))) | |
5 | 1, 4 | mp3an1 1560 | . 2 ⊢ ((𝑇 ∈ ContOp ∧ 𝑦 ∈ ℋ) → (normℎ‘(𝑇‘𝑦)) ≤ ((normop‘𝑇) · (normℎ‘𝑦))) |
6 | 1 | lnopfi 29137 | . . 3 ⊢ 𝑇: ℋ⟶ ℋ |
7 | elcnop 29025 | . . 3 ⊢ (𝑇 ∈ ContOp ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℝ+ ∃𝑦 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑦 → (normℎ‘((𝑇‘𝑤) −ℎ (𝑇‘𝑥))) < 𝑧))) | |
8 | 6, 7 | mpbiran 991 | . 2 ⊢ (𝑇 ∈ ContOp ↔ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℝ+ ∃𝑦 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑦 → (normℎ‘((𝑇‘𝑤) −ℎ (𝑇‘𝑥))) < 𝑧)) |
9 | 6 | ffvelrni 6521 | . . 3 ⊢ (𝑦 ∈ ℋ → (𝑇‘𝑦) ∈ ℋ) |
10 | normcl 28291 | . . 3 ⊢ ((𝑇‘𝑦) ∈ ℋ → (normℎ‘(𝑇‘𝑦)) ∈ ℝ) | |
11 | 9, 10 | syl 17 | . 2 ⊢ (𝑦 ∈ ℋ → (normℎ‘(𝑇‘𝑦)) ∈ ℝ) |
12 | 1 | lnopsubi 29142 | . 2 ⊢ ((𝑤 ∈ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇‘(𝑤 −ℎ 𝑥)) = ((𝑇‘𝑤) −ℎ (𝑇‘𝑥))) |
13 | 3, 5, 8, 11, 12 | lnconi 29201 | 1 ⊢ (𝑇 ∈ ContOp ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (normℎ‘(𝑇‘𝑦)) ≤ (𝑥 · (normℎ‘𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∈ wcel 2139 ∀wral 3050 ∃wrex 3051 class class class wbr 4804 ⟶wf 6045 ‘cfv 6049 (class class class)co 6813 ℝcr 10127 · cmul 10133 < clt 10266 ≤ cle 10267 ℝ+crp 12025 ℋchil 28085 normℎcno 28089 −ℎ cmv 28091 normopcnop 28111 ContOpccop 28112 LinOpclo 28113 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 ax-pre-sup 10206 ax-hilex 28165 ax-hfvadd 28166 ax-hvcom 28167 ax-hvass 28168 ax-hv0cl 28169 ax-hvaddid 28170 ax-hfvmul 28171 ax-hvmulid 28172 ax-hvmulass 28173 ax-hvdistr1 28174 ax-hvdistr2 28175 ax-hvmul0 28176 ax-hfi 28245 ax-his1 28248 ax-his2 28249 ax-his3 28250 ax-his4 28251 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-1st 7333 df-2nd 7334 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-er 7911 df-map 8025 df-en 8122 df-dom 8123 df-sdom 8124 df-sup 8513 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-div 10877 df-nn 11213 df-2 11271 df-3 11272 df-4 11273 df-n0 11485 df-z 11570 df-uz 11880 df-rp 12026 df-seq 12996 df-exp 13055 df-cj 14038 df-re 14039 df-im 14040 df-sqrt 14174 df-abs 14175 df-grpo 27656 df-gid 27657 df-ablo 27708 df-vc 27723 df-nv 27756 df-va 27759 df-ba 27760 df-sm 27761 df-0v 27762 df-nmcv 27764 df-hnorm 28134 df-hba 28135 df-hvsub 28137 df-nmop 29007 df-cnop 29008 df-lnop 29009 df-unop 29011 |
This theorem is referenced by: lnopcon 29203 cnlnadjlem8 29242 |
Copyright terms: Public domain | W3C validator |