MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnon0 Structured version   Visualization version   GIF version

Theorem lnon0 27781
Description: The domain of a nonzero linear operator contains a nonzero vector. (Contributed by NM, 15-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnon0.1 𝑋 = (BaseSet‘𝑈)
lnon0.6 𝑍 = (0vec𝑈)
lnon0.0 𝑂 = (𝑈 0op 𝑊)
lnon0.7 𝐿 = (𝑈 LnOp 𝑊)
Assertion
Ref Expression
lnon0 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ 𝑇𝑂) → ∃𝑥𝑋 𝑥𝑍)
Distinct variable groups:   𝑥,𝐿   𝑥,𝑇   𝑥,𝑈   𝑥,𝑊   𝑥,𝑋
Allowed substitution hints:   𝑂(𝑥)   𝑍(𝑥)

Proof of Theorem lnon0
StepHypRef Expression
1 ralnex 3021 . . . . 5 (∀𝑥𝑋 ¬ 𝑥𝑍 ↔ ¬ ∃𝑥𝑋 𝑥𝑍)
2 nne 2827 . . . . . 6 𝑥𝑍𝑥 = 𝑍)
32ralbii 3009 . . . . 5 (∀𝑥𝑋 ¬ 𝑥𝑍 ↔ ∀𝑥𝑋 𝑥 = 𝑍)
41, 3bitr3i 266 . . . 4 (¬ ∃𝑥𝑋 𝑥𝑍 ↔ ∀𝑥𝑋 𝑥 = 𝑍)
5 fveq2 6229 . . . . . . . . . 10 (𝑥 = 𝑍 → (𝑇𝑥) = (𝑇𝑍))
6 lnon0.1 . . . . . . . . . . 11 𝑋 = (BaseSet‘𝑈)
7 eqid 2651 . . . . . . . . . . 11 (BaseSet‘𝑊) = (BaseSet‘𝑊)
8 lnon0.6 . . . . . . . . . . 11 𝑍 = (0vec𝑈)
9 eqid 2651 . . . . . . . . . . 11 (0vec𝑊) = (0vec𝑊)
10 lnon0.7 . . . . . . . . . . 11 𝐿 = (𝑈 LnOp 𝑊)
116, 7, 8, 9, 10lno0 27739 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑇𝑍) = (0vec𝑊))
125, 11sylan9eqr 2707 . . . . . . . . 9 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ 𝑥 = 𝑍) → (𝑇𝑥) = (0vec𝑊))
1312ex 449 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑥 = 𝑍 → (𝑇𝑥) = (0vec𝑊)))
1413ralimdv 2992 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (∀𝑥𝑋 𝑥 = 𝑍 → ∀𝑥𝑋 (𝑇𝑥) = (0vec𝑊)))
156, 7, 10lnof 27738 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇:𝑋⟶(BaseSet‘𝑊))
16 ffn 6083 . . . . . . . 8 (𝑇:𝑋⟶(BaseSet‘𝑊) → 𝑇 Fn 𝑋)
1715, 16syl 17 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇 Fn 𝑋)
1814, 17jctild 565 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (∀𝑥𝑋 𝑥 = 𝑍 → (𝑇 Fn 𝑋 ∧ ∀𝑥𝑋 (𝑇𝑥) = (0vec𝑊))))
19 fconstfv 6517 . . . . . . 7 (𝑇:𝑋⟶{(0vec𝑊)} ↔ (𝑇 Fn 𝑋 ∧ ∀𝑥𝑋 (𝑇𝑥) = (0vec𝑊)))
20 fvex 6239 . . . . . . . 8 (0vec𝑊) ∈ V
2120fconst2 6511 . . . . . . 7 (𝑇:𝑋⟶{(0vec𝑊)} ↔ 𝑇 = (𝑋 × {(0vec𝑊)}))
2219, 21bitr3i 266 . . . . . 6 ((𝑇 Fn 𝑋 ∧ ∀𝑥𝑋 (𝑇𝑥) = (0vec𝑊)) ↔ 𝑇 = (𝑋 × {(0vec𝑊)}))
2318, 22syl6ib 241 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (∀𝑥𝑋 𝑥 = 𝑍𝑇 = (𝑋 × {(0vec𝑊)})))
24 lnon0.0 . . . . . . . 8 𝑂 = (𝑈 0op 𝑊)
256, 9, 240ofval 27770 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑂 = (𝑋 × {(0vec𝑊)}))
26253adant3 1101 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑂 = (𝑋 × {(0vec𝑊)}))
2726eqeq2d 2661 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑇 = 𝑂𝑇 = (𝑋 × {(0vec𝑊)})))
2823, 27sylibrd 249 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (∀𝑥𝑋 𝑥 = 𝑍𝑇 = 𝑂))
294, 28syl5bi 232 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (¬ ∃𝑥𝑋 𝑥𝑍𝑇 = 𝑂))
3029necon1ad 2840 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑇𝑂 → ∃𝑥𝑋 𝑥𝑍))
3130imp 444 1 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ 𝑇𝑂) → ∃𝑥𝑋 𝑥𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wral 2941  wrex 2942  {csn 4210   × cxp 5141   Fn wfn 5921  wf 5922  cfv 5926  (class class class)co 6690  NrmCVeccnv 27567  BaseSetcba 27569  0veccn0v 27571   LnOp clno 27723   0op c0o 27726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-po 5064  df-so 5065  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-ltxr 10117  df-sub 10306  df-neg 10307  df-grpo 27475  df-gid 27476  df-ginv 27477  df-ablo 27527  df-vc 27542  df-nv 27575  df-va 27578  df-ba 27579  df-sm 27580  df-0v 27581  df-nmcv 27583  df-lno 27727  df-0o 27730
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator