![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lnmfg | Structured version Visualization version GIF version |
Description: A Noetherian left module is finitely generated. (Contributed by Stefan O'Rear, 12-Dec-2014.) |
Ref | Expression |
---|---|
lnmfg | ⊢ (𝑀 ∈ LNoeM → 𝑀 ∈ LFinGen) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2771 | . . 3 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
2 | 1 | ressid 16142 | . 2 ⊢ (𝑀 ∈ LNoeM → (𝑀 ↾s (Base‘𝑀)) = 𝑀) |
3 | lnmlmod 38175 | . . . 4 ⊢ (𝑀 ∈ LNoeM → 𝑀 ∈ LMod) | |
4 | eqid 2771 | . . . . 5 ⊢ (LSubSp‘𝑀) = (LSubSp‘𝑀) | |
5 | 1, 4 | lss1 19149 | . . . 4 ⊢ (𝑀 ∈ LMod → (Base‘𝑀) ∈ (LSubSp‘𝑀)) |
6 | 3, 5 | syl 17 | . . 3 ⊢ (𝑀 ∈ LNoeM → (Base‘𝑀) ∈ (LSubSp‘𝑀)) |
7 | eqid 2771 | . . . 4 ⊢ (𝑀 ↾s (Base‘𝑀)) = (𝑀 ↾s (Base‘𝑀)) | |
8 | 4, 7 | lnmlssfg 38176 | . . 3 ⊢ ((𝑀 ∈ LNoeM ∧ (Base‘𝑀) ∈ (LSubSp‘𝑀)) → (𝑀 ↾s (Base‘𝑀)) ∈ LFinGen) |
9 | 6, 8 | mpdan 667 | . 2 ⊢ (𝑀 ∈ LNoeM → (𝑀 ↾s (Base‘𝑀)) ∈ LFinGen) |
10 | 2, 9 | eqeltrrd 2851 | 1 ⊢ (𝑀 ∈ LNoeM → 𝑀 ∈ LFinGen) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2145 ‘cfv 6031 (class class class)co 6793 Basecbs 16064 ↾s cress 16065 LModclmod 19073 LSubSpclss 19142 LFinGenclfig 38163 LNoeMclnm 38171 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-iota 5994 df-fun 6033 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-ress 16072 df-0g 16310 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-grp 17633 df-lmod 19075 df-lss 19143 df-lnm 38172 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |