Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lnmepi Structured version   Visualization version   GIF version

Theorem lnmepi 38175
Description: Epimorphic images of Noetherian modules are Noetherian. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypothesis
Ref Expression
lnmepi.b 𝐵 = (Base‘𝑇)
Assertion
Ref Expression
lnmepi ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) → 𝑇 ∈ LNoeM)

Proof of Theorem lnmepi
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 lmhmlmod2 19254 . . 3 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod)
213ad2ant1 1128 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) → 𝑇 ∈ LMod)
3 eqid 2760 . . . . . . . . 9 (Base‘𝑆) = (Base‘𝑆)
4 lnmepi.b . . . . . . . . 9 𝐵 = (Base‘𝑇)
53, 4lmhmf 19256 . . . . . . . 8 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:(Base‘𝑆)⟶𝐵)
653ad2ant1 1128 . . . . . . 7 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) → 𝐹:(Base‘𝑆)⟶𝐵)
7 simp3 1133 . . . . . . 7 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) → ran 𝐹 = 𝐵)
8 dffo2 6281 . . . . . . 7 (𝐹:(Base‘𝑆)–onto𝐵 ↔ (𝐹:(Base‘𝑆)⟶𝐵 ∧ ran 𝐹 = 𝐵))
96, 7, 8sylanbrc 701 . . . . . 6 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) → 𝐹:(Base‘𝑆)–onto𝐵)
10 eqid 2760 . . . . . . 7 (LSubSp‘𝑇) = (LSubSp‘𝑇)
114, 10lssss 19159 . . . . . 6 (𝑎 ∈ (LSubSp‘𝑇) → 𝑎𝐵)
12 foimacnv 6316 . . . . . 6 ((𝐹:(Base‘𝑆)–onto𝐵𝑎𝐵) → (𝐹 “ (𝐹𝑎)) = 𝑎)
139, 11, 12syl2an 495 . . . . 5 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → (𝐹 “ (𝐹𝑎)) = 𝑎)
1413oveq2d 6830 . . . 4 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → (𝑇s (𝐹 “ (𝐹𝑎))) = (𝑇s 𝑎))
15 eqid 2760 . . . . 5 (𝑇s (𝐹 “ (𝐹𝑎))) = (𝑇s (𝐹 “ (𝐹𝑎)))
16 eqid 2760 . . . . 5 (𝑆s (𝐹𝑎)) = (𝑆s (𝐹𝑎))
17 eqid 2760 . . . . 5 (LSubSp‘𝑆) = (LSubSp‘𝑆)
18 simpl2 1230 . . . . . 6 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → 𝑆 ∈ LNoeM)
1917, 10lmhmpreima 19270 . . . . . . 7 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → (𝐹𝑎) ∈ (LSubSp‘𝑆))
20193ad2antl1 1201 . . . . . 6 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → (𝐹𝑎) ∈ (LSubSp‘𝑆))
2117, 16lnmlssfg 38170 . . . . . 6 ((𝑆 ∈ LNoeM ∧ (𝐹𝑎) ∈ (LSubSp‘𝑆)) → (𝑆s (𝐹𝑎)) ∈ LFinGen)
2218, 20, 21syl2anc 696 . . . . 5 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → (𝑆s (𝐹𝑎)) ∈ LFinGen)
23 simpl1 1228 . . . . 5 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → 𝐹 ∈ (𝑆 LMHom 𝑇))
2415, 16, 17, 22, 20, 23lmhmfgima 38174 . . . 4 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → (𝑇s (𝐹 “ (𝐹𝑎))) ∈ LFinGen)
2514, 24eqeltrrd 2840 . . 3 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → (𝑇s 𝑎) ∈ LFinGen)
2625ralrimiva 3104 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) → ∀𝑎 ∈ (LSubSp‘𝑇)(𝑇s 𝑎) ∈ LFinGen)
2710islnm 38167 . 2 (𝑇 ∈ LNoeM ↔ (𝑇 ∈ LMod ∧ ∀𝑎 ∈ (LSubSp‘𝑇)(𝑇s 𝑎) ∈ LFinGen))
282, 26, 27sylanbrc 701 1 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) → 𝑇 ∈ LNoeM)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1632  wcel 2139  wral 3050  wss 3715  ccnv 5265  ran crn 5267  cima 5269  wf 6045  ontowfo 6047  cfv 6049  (class class class)co 6814  Basecbs 16079  s cress 16080  LModclmod 19085  LSubSpclss 19154   LMHom clmhm 19241  LFinGenclfig 38157  LNoeMclnm 38165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-sca 16179  df-vsca 16180  df-0g 16324  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-grp 17646  df-minusg 17647  df-sbg 17648  df-subg 17812  df-ghm 17879  df-mgp 18710  df-ur 18722  df-ring 18769  df-lmod 19087  df-lss 19155  df-lsp 19194  df-lmhm 19244  df-lfig 38158  df-lnm 38166
This theorem is referenced by:  lnmlmic  38178  pwslnmlem1  38182  lnrfg  38209
  Copyright terms: Public domain W3C validator