![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lnmepi | Structured version Visualization version GIF version |
Description: Epimorphic images of Noetherian modules are Noetherian. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
Ref | Expression |
---|---|
lnmepi.b | ⊢ 𝐵 = (Base‘𝑇) |
Ref | Expression |
---|---|
lnmepi | ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) → 𝑇 ∈ LNoeM) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmhmlmod2 19254 | . . 3 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod) | |
2 | 1 | 3ad2ant1 1128 | . 2 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) → 𝑇 ∈ LMod) |
3 | eqid 2760 | . . . . . . . . 9 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
4 | lnmepi.b | . . . . . . . . 9 ⊢ 𝐵 = (Base‘𝑇) | |
5 | 3, 4 | lmhmf 19256 | . . . . . . . 8 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:(Base‘𝑆)⟶𝐵) |
6 | 5 | 3ad2ant1 1128 | . . . . . . 7 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) → 𝐹:(Base‘𝑆)⟶𝐵) |
7 | simp3 1133 | . . . . . . 7 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) → ran 𝐹 = 𝐵) | |
8 | dffo2 6281 | . . . . . . 7 ⊢ (𝐹:(Base‘𝑆)–onto→𝐵 ↔ (𝐹:(Base‘𝑆)⟶𝐵 ∧ ran 𝐹 = 𝐵)) | |
9 | 6, 7, 8 | sylanbrc 701 | . . . . . 6 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) → 𝐹:(Base‘𝑆)–onto→𝐵) |
10 | eqid 2760 | . . . . . . 7 ⊢ (LSubSp‘𝑇) = (LSubSp‘𝑇) | |
11 | 4, 10 | lssss 19159 | . . . . . 6 ⊢ (𝑎 ∈ (LSubSp‘𝑇) → 𝑎 ⊆ 𝐵) |
12 | foimacnv 6316 | . . . . . 6 ⊢ ((𝐹:(Base‘𝑆)–onto→𝐵 ∧ 𝑎 ⊆ 𝐵) → (𝐹 “ (◡𝐹 “ 𝑎)) = 𝑎) | |
13 | 9, 11, 12 | syl2an 495 | . . . . 5 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → (𝐹 “ (◡𝐹 “ 𝑎)) = 𝑎) |
14 | 13 | oveq2d 6830 | . . . 4 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → (𝑇 ↾s (𝐹 “ (◡𝐹 “ 𝑎))) = (𝑇 ↾s 𝑎)) |
15 | eqid 2760 | . . . . 5 ⊢ (𝑇 ↾s (𝐹 “ (◡𝐹 “ 𝑎))) = (𝑇 ↾s (𝐹 “ (◡𝐹 “ 𝑎))) | |
16 | eqid 2760 | . . . . 5 ⊢ (𝑆 ↾s (◡𝐹 “ 𝑎)) = (𝑆 ↾s (◡𝐹 “ 𝑎)) | |
17 | eqid 2760 | . . . . 5 ⊢ (LSubSp‘𝑆) = (LSubSp‘𝑆) | |
18 | simpl2 1230 | . . . . . 6 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → 𝑆 ∈ LNoeM) | |
19 | 17, 10 | lmhmpreima 19270 | . . . . . . 7 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → (◡𝐹 “ 𝑎) ∈ (LSubSp‘𝑆)) |
20 | 19 | 3ad2antl1 1201 | . . . . . 6 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → (◡𝐹 “ 𝑎) ∈ (LSubSp‘𝑆)) |
21 | 17, 16 | lnmlssfg 38170 | . . . . . 6 ⊢ ((𝑆 ∈ LNoeM ∧ (◡𝐹 “ 𝑎) ∈ (LSubSp‘𝑆)) → (𝑆 ↾s (◡𝐹 “ 𝑎)) ∈ LFinGen) |
22 | 18, 20, 21 | syl2anc 696 | . . . . 5 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → (𝑆 ↾s (◡𝐹 “ 𝑎)) ∈ LFinGen) |
23 | simpl1 1228 | . . . . 5 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → 𝐹 ∈ (𝑆 LMHom 𝑇)) | |
24 | 15, 16, 17, 22, 20, 23 | lmhmfgima 38174 | . . . 4 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → (𝑇 ↾s (𝐹 “ (◡𝐹 “ 𝑎))) ∈ LFinGen) |
25 | 14, 24 | eqeltrrd 2840 | . . 3 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) ∧ 𝑎 ∈ (LSubSp‘𝑇)) → (𝑇 ↾s 𝑎) ∈ LFinGen) |
26 | 25 | ralrimiva 3104 | . 2 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) → ∀𝑎 ∈ (LSubSp‘𝑇)(𝑇 ↾s 𝑎) ∈ LFinGen) |
27 | 10 | islnm 38167 | . 2 ⊢ (𝑇 ∈ LNoeM ↔ (𝑇 ∈ LMod ∧ ∀𝑎 ∈ (LSubSp‘𝑇)(𝑇 ↾s 𝑎) ∈ LFinGen)) |
28 | 2, 26, 27 | sylanbrc 701 | 1 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑆 ∈ LNoeM ∧ ran 𝐹 = 𝐵) → 𝑇 ∈ LNoeM) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ∀wral 3050 ⊆ wss 3715 ◡ccnv 5265 ran crn 5267 “ cima 5269 ⟶wf 6045 –onto→wfo 6047 ‘cfv 6049 (class class class)co 6814 Basecbs 16079 ↾s cress 16080 LModclmod 19085 LSubSpclss 19154 LMHom clmhm 19241 LFinGenclfig 38157 LNoeMclnm 38165 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-1o 7730 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-fin 8127 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-nn 11233 df-2 11291 df-3 11292 df-4 11293 df-5 11294 df-6 11295 df-ndx 16082 df-slot 16083 df-base 16085 df-sets 16086 df-ress 16087 df-plusg 16176 df-sca 16179 df-vsca 16180 df-0g 16324 df-mgm 17463 df-sgrp 17505 df-mnd 17516 df-grp 17646 df-minusg 17647 df-sbg 17648 df-subg 17812 df-ghm 17879 df-mgp 18710 df-ur 18722 df-ring 18769 df-lmod 19087 df-lss 19155 df-lsp 19194 df-lmhm 19244 df-lfig 38158 df-lnm 38166 |
This theorem is referenced by: lnmlmic 38178 pwslnmlem1 38182 lnrfg 38209 |
Copyright terms: Public domain | W3C validator |