Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnfnmul Structured version   Visualization version   GIF version

Theorem lnfnmul 29238
 Description: Multiplicative property of a linear Hilbert space functional. (Contributed by NM, 30-May-2006.) (New usage is discouraged.)
Assertion
Ref Expression
lnfnmul ((𝑇 ∈ LinFn ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 · 𝐵)) = (𝐴 · (𝑇𝐵)))

Proof of Theorem lnfnmul
StepHypRef Expression
1 fveq1 6353 . . . . 5 (𝑇 = if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0})) → (𝑇‘(𝐴 · 𝐵)) = (if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0}))‘(𝐴 · 𝐵)))
2 fveq1 6353 . . . . . 6 (𝑇 = if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0})) → (𝑇𝐵) = (if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0}))‘𝐵))
32oveq2d 6831 . . . . 5 (𝑇 = if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0})) → (𝐴 · (𝑇𝐵)) = (𝐴 · (if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0}))‘𝐵)))
41, 3eqeq12d 2776 . . . 4 (𝑇 = if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0})) → ((𝑇‘(𝐴 · 𝐵)) = (𝐴 · (𝑇𝐵)) ↔ (if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0}))‘(𝐴 · 𝐵)) = (𝐴 · (if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0}))‘𝐵))))
54imbi2d 329 . . 3 (𝑇 = if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0})) → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 · 𝐵)) = (𝐴 · (𝑇𝐵))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0}))‘(𝐴 · 𝐵)) = (𝐴 · (if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0}))‘𝐵)))))
6 0lnfn 29175 . . . . 5 ( ℋ × {0}) ∈ LinFn
76elimel 4295 . . . 4 if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0})) ∈ LinFn
87lnfnmuli 29234 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0}))‘(𝐴 · 𝐵)) = (𝐴 · (if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0}))‘𝐵)))
95, 8dedth 4284 . 2 (𝑇 ∈ LinFn → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 · 𝐵)) = (𝐴 · (𝑇𝐵))))
1093impib 1109 1 ((𝑇 ∈ LinFn ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 · 𝐵)) = (𝐴 · (𝑇𝐵)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2140  ifcif 4231  {csn 4322   × cxp 5265  ‘cfv 6050  (class class class)co 6815  ℂcc 10147  0cc0 10149   · cmul 10154   ℋchil 28107   ·ℎ csm 28109  LinFnclf 28142 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-hilex 28187  ax-hfvadd 28188  ax-hv0cl 28191  ax-hvaddid 28192  ax-hfvmul 28193  ax-hvmulid 28194 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-op 4329  df-uni 4590  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-id 5175  df-po 5188  df-so 5189  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-er 7914  df-map 8028  df-en 8125  df-dom 8126  df-sdom 8127  df-pnf 10289  df-mnf 10290  df-ltxr 10292  df-sub 10481  df-lnfn 29038 This theorem is referenced by:  kbass4  29309
 Copyright terms: Public domain W3C validator