Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmodvsmdi Structured version   Visualization version   GIF version

Theorem lmodvsmdi 42488
Description: Multiple distributive law for scalar product (left-distributivity). (Contributed by AV, 5-Sep-2019.)
Hypotheses
Ref Expression
lmodvsmdi.v 𝑉 = (Base‘𝑊)
lmodvsmdi.f 𝐹 = (Scalar‘𝑊)
lmodvsmdi.s · = ( ·𝑠𝑊)
lmodvsmdi.k 𝐾 = (Base‘𝐹)
lmodvsmdi.p = (.g𝑊)
lmodvsmdi.e 𝐸 = (.g𝐹)
Assertion
Ref Expression
lmodvsmdi ((𝑊 ∈ LMod ∧ (𝑅𝐾𝑁 ∈ ℕ0𝑋𝑉)) → (𝑅 · (𝑁 𝑋)) = ((𝑁𝐸𝑅) · 𝑋))

Proof of Theorem lmodvsmdi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6697 . . . . . . . . 9 (𝑥 = 0 → (𝑥 𝑋) = (0 𝑋))
21oveq2d 6706 . . . . . . . 8 (𝑥 = 0 → (𝑅 · (𝑥 𝑋)) = (𝑅 · (0 𝑋)))
3 oveq1 6697 . . . . . . . . 9 (𝑥 = 0 → (𝑥𝐸𝑅) = (0𝐸𝑅))
43oveq1d 6705 . . . . . . . 8 (𝑥 = 0 → ((𝑥𝐸𝑅) · 𝑋) = ((0𝐸𝑅) · 𝑋))
52, 4eqeq12d 2666 . . . . . . 7 (𝑥 = 0 → ((𝑅 · (𝑥 𝑋)) = ((𝑥𝐸𝑅) · 𝑋) ↔ (𝑅 · (0 𝑋)) = ((0𝐸𝑅) · 𝑋)))
65imbi2d 329 . . . . . 6 (𝑥 = 0 → ((((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑅 · (𝑥 𝑋)) = ((𝑥𝐸𝑅) · 𝑋)) ↔ (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑅 · (0 𝑋)) = ((0𝐸𝑅) · 𝑋))))
7 oveq1 6697 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 𝑋) = (𝑦 𝑋))
87oveq2d 6706 . . . . . . . 8 (𝑥 = 𝑦 → (𝑅 · (𝑥 𝑋)) = (𝑅 · (𝑦 𝑋)))
9 oveq1 6697 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥𝐸𝑅) = (𝑦𝐸𝑅))
109oveq1d 6705 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑥𝐸𝑅) · 𝑋) = ((𝑦𝐸𝑅) · 𝑋))
118, 10eqeq12d 2666 . . . . . . 7 (𝑥 = 𝑦 → ((𝑅 · (𝑥 𝑋)) = ((𝑥𝐸𝑅) · 𝑋) ↔ (𝑅 · (𝑦 𝑋)) = ((𝑦𝐸𝑅) · 𝑋)))
1211imbi2d 329 . . . . . 6 (𝑥 = 𝑦 → ((((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑅 · (𝑥 𝑋)) = ((𝑥𝐸𝑅) · 𝑋)) ↔ (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑅 · (𝑦 𝑋)) = ((𝑦𝐸𝑅) · 𝑋))))
13 oveq1 6697 . . . . . . . . 9 (𝑥 = (𝑦 + 1) → (𝑥 𝑋) = ((𝑦 + 1) 𝑋))
1413oveq2d 6706 . . . . . . . 8 (𝑥 = (𝑦 + 1) → (𝑅 · (𝑥 𝑋)) = (𝑅 · ((𝑦 + 1) 𝑋)))
15 oveq1 6697 . . . . . . . . 9 (𝑥 = (𝑦 + 1) → (𝑥𝐸𝑅) = ((𝑦 + 1)𝐸𝑅))
1615oveq1d 6705 . . . . . . . 8 (𝑥 = (𝑦 + 1) → ((𝑥𝐸𝑅) · 𝑋) = (((𝑦 + 1)𝐸𝑅) · 𝑋))
1714, 16eqeq12d 2666 . . . . . . 7 (𝑥 = (𝑦 + 1) → ((𝑅 · (𝑥 𝑋)) = ((𝑥𝐸𝑅) · 𝑋) ↔ (𝑅 · ((𝑦 + 1) 𝑋)) = (((𝑦 + 1)𝐸𝑅) · 𝑋)))
1817imbi2d 329 . . . . . 6 (𝑥 = (𝑦 + 1) → ((((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑅 · (𝑥 𝑋)) = ((𝑥𝐸𝑅) · 𝑋)) ↔ (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑅 · ((𝑦 + 1) 𝑋)) = (((𝑦 + 1)𝐸𝑅) · 𝑋))))
19 oveq1 6697 . . . . . . . . 9 (𝑥 = 𝑁 → (𝑥 𝑋) = (𝑁 𝑋))
2019oveq2d 6706 . . . . . . . 8 (𝑥 = 𝑁 → (𝑅 · (𝑥 𝑋)) = (𝑅 · (𝑁 𝑋)))
21 oveq1 6697 . . . . . . . . 9 (𝑥 = 𝑁 → (𝑥𝐸𝑅) = (𝑁𝐸𝑅))
2221oveq1d 6705 . . . . . . . 8 (𝑥 = 𝑁 → ((𝑥𝐸𝑅) · 𝑋) = ((𝑁𝐸𝑅) · 𝑋))
2320, 22eqeq12d 2666 . . . . . . 7 (𝑥 = 𝑁 → ((𝑅 · (𝑥 𝑋)) = ((𝑥𝐸𝑅) · 𝑋) ↔ (𝑅 · (𝑁 𝑋)) = ((𝑁𝐸𝑅) · 𝑋)))
2423imbi2d 329 . . . . . 6 (𝑥 = 𝑁 → ((((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑅 · (𝑥 𝑋)) = ((𝑥𝐸𝑅) · 𝑋)) ↔ (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑅 · (𝑁 𝑋)) = ((𝑁𝐸𝑅) · 𝑋))))
25 simpr 476 . . . . . . . . . 10 ((𝑅𝐾𝑋𝑉) → 𝑋𝑉)
2625adantr 480 . . . . . . . . 9 (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → 𝑋𝑉)
27 lmodvsmdi.v . . . . . . . . . 10 𝑉 = (Base‘𝑊)
28 eqid 2651 . . . . . . . . . 10 (0g𝑊) = (0g𝑊)
29 lmodvsmdi.p . . . . . . . . . 10 = (.g𝑊)
3027, 28, 29mulg0 17593 . . . . . . . . 9 (𝑋𝑉 → (0 𝑋) = (0g𝑊))
3126, 30syl 17 . . . . . . . 8 (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (0 𝑋) = (0g𝑊))
3231oveq2d 6706 . . . . . . 7 (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑅 · (0 𝑋)) = (𝑅 · (0g𝑊)))
33 simpl 472 . . . . . . . . . . 11 ((𝑅𝐾𝑋𝑉) → 𝑅𝐾)
3433anim1i 591 . . . . . . . . . 10 (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑅𝐾𝑊 ∈ LMod))
3534ancomd 466 . . . . . . . . 9 (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑊 ∈ LMod ∧ 𝑅𝐾))
36 lmodvsmdi.f . . . . . . . . . 10 𝐹 = (Scalar‘𝑊)
37 lmodvsmdi.s . . . . . . . . . 10 · = ( ·𝑠𝑊)
38 lmodvsmdi.k . . . . . . . . . 10 𝐾 = (Base‘𝐹)
3936, 37, 38, 28lmodvs0 18945 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑅𝐾) → (𝑅 · (0g𝑊)) = (0g𝑊))
4035, 39syl 17 . . . . . . . 8 (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑅 · (0g𝑊)) = (0g𝑊))
4125anim1i 591 . . . . . . . . . 10 (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑋𝑉𝑊 ∈ LMod))
4241ancomd 466 . . . . . . . . 9 (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑊 ∈ LMod ∧ 𝑋𝑉))
43 eqid 2651 . . . . . . . . . 10 (0g𝐹) = (0g𝐹)
4427, 36, 37, 43, 28lmod0vs 18944 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((0g𝐹) · 𝑋) = (0g𝑊))
4542, 44syl 17 . . . . . . . 8 (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → ((0g𝐹) · 𝑋) = (0g𝑊))
4633adantr 480 . . . . . . . . . 10 (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → 𝑅𝐾)
47 lmodvsmdi.e . . . . . . . . . . . 12 𝐸 = (.g𝐹)
4838, 43, 47mulg0 17593 . . . . . . . . . . 11 (𝑅𝐾 → (0𝐸𝑅) = (0g𝐹))
4948eqcomd 2657 . . . . . . . . . 10 (𝑅𝐾 → (0g𝐹) = (0𝐸𝑅))
5046, 49syl 17 . . . . . . . . 9 (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (0g𝐹) = (0𝐸𝑅))
5150oveq1d 6705 . . . . . . . 8 (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → ((0g𝐹) · 𝑋) = ((0𝐸𝑅) · 𝑋))
5240, 45, 513eqtr2d 2691 . . . . . . 7 (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑅 · (0g𝑊)) = ((0𝐸𝑅) · 𝑋))
5332, 52eqtrd 2685 . . . . . 6 (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑅 · (0 𝑋)) = ((0𝐸𝑅) · 𝑋))
54 lmodgrp 18918 . . . . . . . . . . . . . . 15 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
55 grpmnd 17476 . . . . . . . . . . . . . . 15 (𝑊 ∈ Grp → 𝑊 ∈ Mnd)
5654, 55syl 17 . . . . . . . . . . . . . 14 (𝑊 ∈ LMod → 𝑊 ∈ Mnd)
5756ad2antll 765 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → 𝑊 ∈ Mnd)
58 simpl 472 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → 𝑦 ∈ ℕ0)
5926adantl 481 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → 𝑋𝑉)
60 eqid 2651 . . . . . . . . . . . . . 14 (+g𝑊) = (+g𝑊)
6127, 29, 60mulgnn0p1 17599 . . . . . . . . . . . . 13 ((𝑊 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝑋𝑉) → ((𝑦 + 1) 𝑋) = ((𝑦 𝑋)(+g𝑊)𝑋))
6257, 58, 59, 61syl3anc 1366 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → ((𝑦 + 1) 𝑋) = ((𝑦 𝑋)(+g𝑊)𝑋))
6362oveq2d 6706 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → (𝑅 · ((𝑦 + 1) 𝑋)) = (𝑅 · ((𝑦 𝑋)(+g𝑊)𝑋)))
64 simpr 476 . . . . . . . . . . . . 13 (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → 𝑊 ∈ LMod)
6564adantl 481 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → 𝑊 ∈ LMod)
66 simprll 819 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → 𝑅𝐾)
6727, 29mulgnn0cl 17605 . . . . . . . . . . . . 13 ((𝑊 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝑋𝑉) → (𝑦 𝑋) ∈ 𝑉)
6857, 58, 59, 67syl3anc 1366 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → (𝑦 𝑋) ∈ 𝑉)
6927, 60, 36, 37, 38lmodvsdi 18934 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ (𝑅𝐾 ∧ (𝑦 𝑋) ∈ 𝑉𝑋𝑉)) → (𝑅 · ((𝑦 𝑋)(+g𝑊)𝑋)) = ((𝑅 · (𝑦 𝑋))(+g𝑊)(𝑅 · 𝑋)))
7065, 66, 68, 59, 69syl13anc 1368 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → (𝑅 · ((𝑦 𝑋)(+g𝑊)𝑋)) = ((𝑅 · (𝑦 𝑋))(+g𝑊)(𝑅 · 𝑋)))
7163, 70eqtrd 2685 . . . . . . . . . 10 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → (𝑅 · ((𝑦 + 1) 𝑋)) = ((𝑅 · (𝑦 𝑋))(+g𝑊)(𝑅 · 𝑋)))
72 oveq1 6697 . . . . . . . . . 10 ((𝑅 · (𝑦 𝑋)) = ((𝑦𝐸𝑅) · 𝑋) → ((𝑅 · (𝑦 𝑋))(+g𝑊)(𝑅 · 𝑋)) = (((𝑦𝐸𝑅) · 𝑋)(+g𝑊)(𝑅 · 𝑋)))
7371, 72sylan9eq 2705 . . . . . . . . 9 (((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) ∧ (𝑅 · (𝑦 𝑋)) = ((𝑦𝐸𝑅) · 𝑋)) → (𝑅 · ((𝑦 + 1) 𝑋)) = (((𝑦𝐸𝑅) · 𝑋)(+g𝑊)(𝑅 · 𝑋)))
7436lmodfgrp 18920 . . . . . . . . . . . . . . 15 (𝑊 ∈ LMod → 𝐹 ∈ Grp)
75 grpmnd 17476 . . . . . . . . . . . . . . 15 (𝐹 ∈ Grp → 𝐹 ∈ Mnd)
7674, 75syl 17 . . . . . . . . . . . . . 14 (𝑊 ∈ LMod → 𝐹 ∈ Mnd)
7776ad2antll 765 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → 𝐹 ∈ Mnd)
7838, 47mulgnn0cl 17605 . . . . . . . . . . . . 13 ((𝐹 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝑅𝐾) → (𝑦𝐸𝑅) ∈ 𝐾)
7977, 58, 66, 78syl3anc 1366 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → (𝑦𝐸𝑅) ∈ 𝐾)
80 eqid 2651 . . . . . . . . . . . . 13 (+g𝐹) = (+g𝐹)
8127, 60, 36, 37, 38, 80lmodvsdir 18935 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ ((𝑦𝐸𝑅) ∈ 𝐾𝑅𝐾𝑋𝑉)) → (((𝑦𝐸𝑅)(+g𝐹)𝑅) · 𝑋) = (((𝑦𝐸𝑅) · 𝑋)(+g𝑊)(𝑅 · 𝑋)))
8265, 79, 66, 59, 81syl13anc 1368 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → (((𝑦𝐸𝑅)(+g𝐹)𝑅) · 𝑋) = (((𝑦𝐸𝑅) · 𝑋)(+g𝑊)(𝑅 · 𝑋)))
8338, 47, 80mulgnn0p1 17599 . . . . . . . . . . . . . 14 ((𝐹 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝑅𝐾) → ((𝑦 + 1)𝐸𝑅) = ((𝑦𝐸𝑅)(+g𝐹)𝑅))
8477, 58, 66, 83syl3anc 1366 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → ((𝑦 + 1)𝐸𝑅) = ((𝑦𝐸𝑅)(+g𝐹)𝑅))
8584eqcomd 2657 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → ((𝑦𝐸𝑅)(+g𝐹)𝑅) = ((𝑦 + 1)𝐸𝑅))
8685oveq1d 6705 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → (((𝑦𝐸𝑅)(+g𝐹)𝑅) · 𝑋) = (((𝑦 + 1)𝐸𝑅) · 𝑋))
8782, 86eqtr3d 2687 . . . . . . . . . 10 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → (((𝑦𝐸𝑅) · 𝑋)(+g𝑊)(𝑅 · 𝑋)) = (((𝑦 + 1)𝐸𝑅) · 𝑋))
8887adantr 480 . . . . . . . . 9 (((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) ∧ (𝑅 · (𝑦 𝑋)) = ((𝑦𝐸𝑅) · 𝑋)) → (((𝑦𝐸𝑅) · 𝑋)(+g𝑊)(𝑅 · 𝑋)) = (((𝑦 + 1)𝐸𝑅) · 𝑋))
8973, 88eqtrd 2685 . . . . . . . 8 (((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) ∧ (𝑅 · (𝑦 𝑋)) = ((𝑦𝐸𝑅) · 𝑋)) → (𝑅 · ((𝑦 + 1) 𝑋)) = (((𝑦 + 1)𝐸𝑅) · 𝑋))
9089exp31 629 . . . . . . 7 (𝑦 ∈ ℕ0 → (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → ((𝑅 · (𝑦 𝑋)) = ((𝑦𝐸𝑅) · 𝑋) → (𝑅 · ((𝑦 + 1) 𝑋)) = (((𝑦 + 1)𝐸𝑅) · 𝑋))))
9190a2d 29 . . . . . 6 (𝑦 ∈ ℕ0 → ((((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑅 · (𝑦 𝑋)) = ((𝑦𝐸𝑅) · 𝑋)) → (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑅 · ((𝑦 + 1) 𝑋)) = (((𝑦 + 1)𝐸𝑅) · 𝑋))))
926, 12, 18, 24, 53, 91nn0ind 11510 . . . . 5 (𝑁 ∈ ℕ0 → (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑅 · (𝑁 𝑋)) = ((𝑁𝐸𝑅) · 𝑋)))
9392exp4c 635 . . . 4 (𝑁 ∈ ℕ0 → (𝑅𝐾 → (𝑋𝑉 → (𝑊 ∈ LMod → (𝑅 · (𝑁 𝑋)) = ((𝑁𝐸𝑅) · 𝑋)))))
9493com12 32 . . 3 (𝑅𝐾 → (𝑁 ∈ ℕ0 → (𝑋𝑉 → (𝑊 ∈ LMod → (𝑅 · (𝑁 𝑋)) = ((𝑁𝐸𝑅) · 𝑋)))))
95943imp 1275 . 2 ((𝑅𝐾𝑁 ∈ ℕ0𝑋𝑉) → (𝑊 ∈ LMod → (𝑅 · (𝑁 𝑋)) = ((𝑁𝐸𝑅) · 𝑋)))
9695impcom 445 1 ((𝑊 ∈ LMod ∧ (𝑅𝐾𝑁 ∈ ℕ0𝑋𝑉)) → (𝑅 · (𝑁 𝑋)) = ((𝑁𝐸𝑅) · 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054   = wceq 1523  wcel 2030  cfv 5926  (class class class)co 6690  0cc0 9974  1c1 9975   + caddc 9977  0cn0 11330  Basecbs 15904  +gcplusg 15988  Scalarcsca 15991   ·𝑠 cvsca 15992  0gc0g 16147  Mndcmnd 17341  Grpcgrp 17469  .gcmg 17587  LModclmod 18911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-seq 12842  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-plusg 16001  df-0g 16149  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-grp 17472  df-mulg 17588  df-mgp 18536  df-ring 18595  df-lmod 18913
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator