![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmodvsdi | Structured version Visualization version GIF version |
Description: Distributive law for scalar product (left-distributivity). (ax-hvdistr1 28195 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.) |
Ref | Expression |
---|---|
lmodvsdi.v | ⊢ 𝑉 = (Base‘𝑊) |
lmodvsdi.a | ⊢ + = (+g‘𝑊) |
lmodvsdi.f | ⊢ 𝐹 = (Scalar‘𝑊) |
lmodvsdi.s | ⊢ · = ( ·𝑠 ‘𝑊) |
lmodvsdi.k | ⊢ 𝐾 = (Base‘𝐹) |
Ref | Expression |
---|---|
lmodvsdi | ⊢ ((𝑊 ∈ LMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodvsdi.v | . . . . . . . . 9 ⊢ 𝑉 = (Base‘𝑊) | |
2 | lmodvsdi.a | . . . . . . . . 9 ⊢ + = (+g‘𝑊) | |
3 | lmodvsdi.s | . . . . . . . . 9 ⊢ · = ( ·𝑠 ‘𝑊) | |
4 | lmodvsdi.f | . . . . . . . . 9 ⊢ 𝐹 = (Scalar‘𝑊) | |
5 | lmodvsdi.k | . . . . . . . . 9 ⊢ 𝐾 = (Base‘𝐹) | |
6 | eqid 2760 | . . . . . . . . 9 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
7 | eqid 2760 | . . . . . . . . 9 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
8 | eqid 2760 | . . . . . . . . 9 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | lmodlema 19090 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑌 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → (((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌)) ∧ ((𝑅(+g‘𝐹)𝑅) · 𝑋) = ((𝑅 · 𝑋) + (𝑅 · 𝑋))) ∧ (((𝑅(.r‘𝐹)𝑅) · 𝑋) = (𝑅 · (𝑅 · 𝑋)) ∧ ((1r‘𝐹) · 𝑋) = 𝑋))) |
10 | 9 | simpld 477 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑌 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌)) ∧ ((𝑅(+g‘𝐹)𝑅) · 𝑋) = ((𝑅 · 𝑋) + (𝑅 · 𝑋)))) |
11 | 10 | simp2d 1138 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑌 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌))) |
12 | 11 | 3expia 1115 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾)) → ((𝑌 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌)))) |
13 | 12 | anabsan2 898 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾) → ((𝑌 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌)))) |
14 | 13 | exp4b 633 | . . 3 ⊢ (𝑊 ∈ LMod → (𝑅 ∈ 𝐾 → (𝑌 ∈ 𝑉 → (𝑋 ∈ 𝑉 → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌)))))) |
15 | 14 | com34 91 | . 2 ⊢ (𝑊 ∈ LMod → (𝑅 ∈ 𝐾 → (𝑋 ∈ 𝑉 → (𝑌 ∈ 𝑉 → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌)))))) |
16 | 15 | 3imp2 1443 | 1 ⊢ ((𝑊 ∈ LMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ‘cfv 6049 (class class class)co 6814 Basecbs 16079 +gcplusg 16163 .rcmulr 16164 Scalarcsca 16166 ·𝑠 cvsca 16167 1rcur 18721 LModclmod 19085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-nul 4941 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-iota 6012 df-fv 6057 df-ov 6817 df-lmod 19087 |
This theorem is referenced by: lmodcom 19131 lmodsubdi 19142 lmodvsghm 19146 islss3 19181 prdslmodd 19191 lmodvsinv2 19259 lmhmplusg 19266 lsmcl 19305 pj1lmhm 19322 lspfixed 19350 lspsolvlem 19364 clmvsdi 23112 cvsi 23150 lshpkrlem4 34921 baerlem5alem1 37517 baerlem5blem1 37518 hdmap14lem8 37687 mendlmod 38283 lmodvsmdi 42691 |
Copyright terms: Public domain | W3C validator |