![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmodvsass | Structured version Visualization version GIF version |
Description: Associative law for scalar product. (ax-hvmulass 28165 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.) |
Ref | Expression |
---|---|
lmodvsass.v | ⊢ 𝑉 = (Base‘𝑊) |
lmodvsass.f | ⊢ 𝐹 = (Scalar‘𝑊) |
lmodvsass.s | ⊢ · = ( ·𝑠 ‘𝑊) |
lmodvsass.k | ⊢ 𝐾 = (Base‘𝐹) |
lmodvsass.t | ⊢ × = (.r‘𝐹) |
Ref | Expression |
---|---|
lmodvsass | ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodvsass.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
2 | eqid 2752 | . . . . . . 7 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
3 | lmodvsass.s | . . . . . . 7 ⊢ · = ( ·𝑠 ‘𝑊) | |
4 | lmodvsass.f | . . . . . . 7 ⊢ 𝐹 = (Scalar‘𝑊) | |
5 | lmodvsass.k | . . . . . . 7 ⊢ 𝐾 = (Base‘𝐹) | |
6 | eqid 2752 | . . . . . . 7 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
7 | lmodvsass.t | . . . . . . 7 ⊢ × = (.r‘𝐹) | |
8 | eqid 2752 | . . . . . . 7 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | lmodlema 19062 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → (((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋(+g‘𝑊)𝑋)) = ((𝑅 · 𝑋)(+g‘𝑊)(𝑅 · 𝑋)) ∧ ((𝑄(+g‘𝐹)𝑅) · 𝑋) = ((𝑄 · 𝑋)(+g‘𝑊)(𝑅 · 𝑋))) ∧ (((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋)) ∧ ((1r‘𝐹) · 𝑋) = 𝑋))) |
10 | 9 | simprld 812 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋))) |
11 | 10 | 3expa 1111 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋))) |
12 | 11 | anabsan2 898 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾)) ∧ 𝑋 ∈ 𝑉) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋))) |
13 | 12 | exp42 640 | . 2 ⊢ (𝑊 ∈ LMod → (𝑄 ∈ 𝐾 → (𝑅 ∈ 𝐾 → (𝑋 ∈ 𝑉 → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋)))))) |
14 | 13 | 3imp2 1440 | 1 ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1624 ∈ wcel 2131 ‘cfv 6041 (class class class)co 6805 Basecbs 16051 +gcplusg 16135 .rcmulr 16136 Scalarcsca 16138 ·𝑠 cvsca 16139 1rcur 18693 LModclmod 19057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-nul 4933 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ral 3047 df-rex 3048 df-rab 3051 df-v 3334 df-sbc 3569 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-nul 4051 df-if 4223 df-sn 4314 df-pr 4316 df-op 4320 df-uni 4581 df-br 4797 df-iota 6004 df-fv 6049 df-ov 6808 df-lmod 19059 |
This theorem is referenced by: lmodvs0 19091 lmodvsneg 19101 lmodsubvs 19113 lmodsubdi 19114 lmodsubdir 19115 islss3 19153 lss1d 19157 prdslmodd 19163 lmodvsinv 19230 lmhmvsca 19239 lvecvs0or 19302 lssvs0or 19304 lvecinv 19307 lspsnvs 19308 lspfixed 19322 lspsolvlem 19336 lspsolv 19337 assa2ass 19516 asclrhm 19536 assamulgscmlem2 19543 mplmon2mul 19695 frlmup1 20331 smatvscl 20524 matinv 20677 clmvsass 23081 cvsi 23122 lshpkrlem4 34895 lcdvsass 37390 baerlem3lem1 37490 hgmapmul 37681 mendlmod 38257 lincscm 42721 ldepsprlem 42763 lincresunit3lem3 42765 lincresunit3lem1 42770 |
Copyright terms: Public domain | W3C validator |