![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmodvs1 | Structured version Visualization version GIF version |
Description: Scalar product with ring unit. (ax-hvmulid 28193 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lmodvs1.v | ⊢ 𝑉 = (Base‘𝑊) |
lmodvs1.f | ⊢ 𝐹 = (Scalar‘𝑊) |
lmodvs1.s | ⊢ · = ( ·𝑠 ‘𝑊) |
lmodvs1.u | ⊢ 1 = (1r‘𝐹) |
Ref | Expression |
---|---|
lmodvs1 | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ( 1 · 𝑋) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 474 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑊 ∈ LMod) | |
2 | lmodvs1.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
3 | eqid 2760 | . . . 4 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
4 | lmodvs1.u | . . . 4 ⊢ 1 = (1r‘𝐹) | |
5 | 2, 3, 4 | lmod1cl 19112 | . . 3 ⊢ (𝑊 ∈ LMod → 1 ∈ (Base‘𝐹)) |
6 | 5 | adantr 472 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 1 ∈ (Base‘𝐹)) |
7 | simpr 479 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑉) | |
8 | lmodvs1.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
9 | eqid 2760 | . . . 4 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
10 | lmodvs1.s | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
11 | eqid 2760 | . . . 4 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
12 | eqid 2760 | . . . 4 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
13 | 8, 9, 10, 2, 3, 11, 12, 4 | lmodlema 19090 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ ( 1 ∈ (Base‘𝐹) ∧ 1 ∈ (Base‘𝐹)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ((( 1 · 𝑋) ∈ 𝑉 ∧ ( 1 · (𝑋(+g‘𝑊)𝑋)) = (( 1 · 𝑋)(+g‘𝑊)( 1 · 𝑋)) ∧ (( 1 (+g‘𝐹) 1 ) · 𝑋) = (( 1 · 𝑋)(+g‘𝑊)( 1 · 𝑋))) ∧ ((( 1 (.r‘𝐹) 1 ) · 𝑋) = ( 1 · ( 1 · 𝑋)) ∧ ( 1 · 𝑋) = 𝑋))) |
14 | 13 | simprrd 814 | . 2 ⊢ ((𝑊 ∈ LMod ∧ ( 1 ∈ (Base‘𝐹) ∧ 1 ∈ (Base‘𝐹)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ( 1 · 𝑋) = 𝑋) |
15 | 1, 6, 6, 7, 7, 14 | syl122anc 1486 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ( 1 · 𝑋) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ‘cfv 6049 (class class class)co 6814 Basecbs 16079 +gcplusg 16163 .rcmulr 16164 Scalarcsca 16166 ·𝑠 cvsca 16167 1rcur 18721 LModclmod 19085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-nn 11233 df-2 11291 df-ndx 16082 df-slot 16083 df-base 16085 df-sets 16086 df-plusg 16176 df-0g 16324 df-mgm 17463 df-sgrp 17505 df-mnd 17516 df-mgp 18710 df-ur 18722 df-ring 18769 df-lmod 19087 |
This theorem is referenced by: lmodfopne 19123 lmodvneg1 19128 lmodcom 19131 lssvacl 19176 islss3 19181 prdslmodd 19191 lspsn 19224 islmhm2 19260 lbsind2 19303 lvecvs0or 19330 lssvs0or 19332 lvecinv 19335 lspsnvs 19336 lspsneq 19344 lspfixed 19350 lspexch 19351 lspsolv 19365 asclrhm 19564 assamulgscmlem1 19570 coe1pwmul 19871 ply1scl1 19884 ply1idvr1 19885 frlmup2 20360 lindfind2 20379 scmatid 20542 scmatmhm 20562 matinv 20705 decpmatid 20797 idpm2idmp 20828 chfacfscmulgsum 20887 cpmadugsumlemF 20903 clmvs1 23113 cvsi 23150 deg1pwle 24098 deg1pw 24099 ply1remlem 24141 lfl0 34873 lfladd 34874 dochfl1 37285 lcfl7lem 37308 mapdpglem21 37501 mapdpglem30 37511 mapdpglem31 37512 hgmapval1 37705 mendlmod 38283 lmod0rng 42396 ascl1 42694 ply1vr1smo 42697 linc1 42742 ldepspr 42790 lincresunit3lem3 42791 islindeps2 42800 |
Copyright terms: Public domain | W3C validator |