![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmodvacl | Structured version Visualization version GIF version |
Description: Closure of vector addition for a left module. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lmodvacl.v | ⊢ 𝑉 = (Base‘𝑊) |
lmodvacl.a | ⊢ + = (+g‘𝑊) |
Ref | Expression |
---|---|
lmodvacl | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) ∈ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodgrp 19093 | . 2 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) | |
2 | lmodvacl.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
3 | lmodvacl.a | . . 3 ⊢ + = (+g‘𝑊) | |
4 | 2, 3 | grpcl 17652 | . 2 ⊢ ((𝑊 ∈ Grp ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) ∈ 𝑉) |
5 | 1, 4 | syl3an1 1167 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) ∈ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1072 = wceq 1632 ∈ wcel 2140 ‘cfv 6050 (class class class)co 6815 Basecbs 16080 +gcplusg 16164 Grpcgrp 17644 LModclmod 19086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-nul 4942 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ral 3056 df-rex 3057 df-rab 3060 df-v 3343 df-sbc 3578 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-sn 4323 df-pr 4325 df-op 4329 df-uni 4590 df-br 4806 df-iota 6013 df-fv 6058 df-ov 6818 df-mgm 17464 df-sgrp 17506 df-mnd 17517 df-grp 17647 df-lmod 19088 |
This theorem is referenced by: lmodcom 19132 lmodvsghm 19147 lss1 19162 lspprabs 19318 lspabs2 19343 lspabs3 19344 lspfixed 19351 lspexch 19352 lspsolvlem 19365 ipdir 20207 ipdi 20208 ip2di 20209 ocvlss 20239 frlmphl 20343 frlmup1 20360 nmparlem 23259 minveclem2 23418 lsatfixedN 34818 lfl0f 34878 lfladdcl 34880 lflnegcl 34884 lflvscl 34886 lkrlss 34904 lshpkrlem5 34923 lshpkrlem6 34924 dvh3dim2 37258 dvh3dim3N 37259 lcfrlem17 37369 lcfrlem19 37371 lcfrlem20 37372 lcfrlem23 37375 baerlem3lem1 37517 baerlem5alem1 37518 baerlem5blem1 37519 baerlem5alem2 37521 baerlem5blem2 37522 mapdindp0 37529 mapdindp2 37531 mapdindp4 37533 mapdh6lem2N 37544 mapdh6aN 37545 mapdh6dN 37549 mapdh6eN 37550 mapdh6hN 37553 hdmap1l6lem2 37619 hdmap1l6a 37620 hdmap1l6d 37624 hdmap1l6e 37625 hdmap1l6h 37628 hdmap11lem1 37654 hdmap11lem2 37655 hdmapneg 37659 hdmaprnlem3N 37663 hdmaprnlem3uN 37664 hdmaprnlem6N 37667 hdmaprnlem7N 37668 hdmaprnlem9N 37670 hdmaprnlem3eN 37671 hdmap14lem10 37690 hdmapinvlem3 37733 hdmapinvlem4 37734 hdmapglem7b 37741 hlhilphllem 37772 lincsumcl 42749 |
Copyright terms: Public domain | W3C validator |