![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmodring | Structured version Visualization version GIF version |
Description: The scalar component of a left module is a ring. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lmodring.1 | ⊢ 𝐹 = (Scalar‘𝑊) |
Ref | Expression |
---|---|
lmodring | ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2760 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | eqid 2760 | . . 3 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
3 | eqid 2760 | . . 3 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
4 | lmodring.1 | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
5 | eqid 2760 | . . 3 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
6 | eqid 2760 | . . 3 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
7 | eqid 2760 | . . 3 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
8 | eqid 2760 | . . 3 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | islmod 19069 | . 2 ⊢ (𝑊 ∈ LMod ↔ (𝑊 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞 ∈ (Base‘𝐹)∀𝑟 ∈ (Base‘𝐹)∀𝑥 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑟( ·𝑠 ‘𝑊)𝑤) ∈ (Base‘𝑊) ∧ (𝑟( ·𝑠 ‘𝑊)(𝑤(+g‘𝑊)𝑥)) = ((𝑟( ·𝑠 ‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑥)) ∧ ((𝑞(+g‘𝐹)𝑟)( ·𝑠 ‘𝑊)𝑤) = ((𝑞( ·𝑠 ‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑤))) ∧ (((𝑞(.r‘𝐹)𝑟)( ·𝑠 ‘𝑊)𝑤) = (𝑞( ·𝑠 ‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑤)) ∧ ((1r‘𝐹)( ·𝑠 ‘𝑊)𝑤) = 𝑤)))) |
10 | 9 | simp2bi 1141 | 1 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ∀wral 3050 ‘cfv 6049 (class class class)co 6813 Basecbs 16059 +gcplusg 16143 .rcmulr 16144 Scalarcsca 16146 ·𝑠 cvsca 16147 Grpcgrp 17623 1rcur 18701 Ringcrg 18747 LModclmod 19065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-nul 4941 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-iota 6012 df-fv 6057 df-ov 6816 df-lmod 19067 |
This theorem is referenced by: lmodfgrp 19074 lmodmcl 19077 lmod0cl 19091 lmod1cl 19092 lmod0vs 19098 lmodvs0 19099 lmodvsmmulgdi 19100 lmodvsneg 19109 lmodsubvs 19121 lmodsubdi 19122 lmodsubdir 19123 lssvnegcl 19158 islss3 19161 pwslmod 19172 lmodvsinv 19238 islmhm2 19240 lbsind2 19283 lspsneq 19324 lspexch 19331 asclghm 19540 ip2subdi 20191 isphld 20201 ocvlss 20218 frlmup1 20339 frlmup2 20340 frlmup3 20341 frlmup4 20342 islindf5 20380 lmisfree 20383 tlmtgp 22200 clmring 23070 lmodslmd 30066 lfl0 34855 lfladd 34856 lflsub 34857 lfl0f 34859 lfladdcl 34861 lfladdcom 34862 lfladdass 34863 lfladd0l 34864 lflnegcl 34865 lflnegl 34866 lflvscl 34867 lflvsdi1 34868 lflvsdi2 34869 lflvsass 34871 lfl0sc 34872 lflsc0N 34873 lfl1sc 34874 lkrlss 34885 eqlkr 34889 eqlkr3 34891 lkrlsp 34892 ldualvsass 34931 lduallmodlem 34942 ldualvsubcl 34946 ldualvsubval 34947 lkrin 34954 dochfl1 37267 lcfl7lem 37290 lclkrlem2m 37310 lclkrlem2o 37312 lclkrlem2p 37313 lcfrlem1 37333 lcfrlem2 37334 lcfrlem3 37335 lcfrlem29 37362 lcfrlem33 37366 lcdvsubval 37409 mapdpglem30 37493 baerlem3lem1 37498 baerlem5alem1 37499 baerlem5blem1 37500 baerlem5blem2 37503 hgmapval1 37687 hdmapinvlem3 37714 hdmapinvlem4 37715 hdmapglem5 37716 hgmapvvlem1 37717 hdmapglem7b 37722 hdmapglem7 37723 lmod0rng 42378 ascl1 42676 linc0scn0 42722 linc1 42724 lincscm 42729 lincscmcl 42731 el0ldep 42765 lindsrng01 42767 lindszr 42768 ldepsprlem 42771 ldepspr 42772 lincresunit3lem3 42773 lincresunitlem1 42774 lincresunitlem2 42775 lincresunit2 42777 lincresunit3lem1 42778 |
Copyright terms: Public domain | W3C validator |