![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmodpropd | Structured version Visualization version GIF version |
Description: If two structures have the same components (properties), one is a left module iff the other one is. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 27-Jun-2015.) |
Ref | Expression |
---|---|
lmodpropd.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
lmodpropd.2 | ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
lmodpropd.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
lmodpropd.4 | ⊢ (𝜑 → 𝐹 = (Scalar‘𝐾)) |
lmodpropd.5 | ⊢ (𝜑 → 𝐹 = (Scalar‘𝐿)) |
lmodpropd.6 | ⊢ 𝑃 = (Base‘𝐹) |
lmodpropd.7 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) |
Ref | Expression |
---|---|
lmodpropd | ⊢ (𝜑 → (𝐾 ∈ LMod ↔ 𝐿 ∈ LMod)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodpropd.1 | . 2 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
2 | lmodpropd.2 | . 2 ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | |
3 | eqid 2760 | . 2 ⊢ (Scalar‘𝐾) = (Scalar‘𝐾) | |
4 | eqid 2760 | . 2 ⊢ (Scalar‘𝐿) = (Scalar‘𝐿) | |
5 | lmodpropd.6 | . . 3 ⊢ 𝑃 = (Base‘𝐹) | |
6 | lmodpropd.4 | . . . 4 ⊢ (𝜑 → 𝐹 = (Scalar‘𝐾)) | |
7 | 6 | fveq2d 6357 | . . 3 ⊢ (𝜑 → (Base‘𝐹) = (Base‘(Scalar‘𝐾))) |
8 | 5, 7 | syl5eq 2806 | . 2 ⊢ (𝜑 → 𝑃 = (Base‘(Scalar‘𝐾))) |
9 | lmodpropd.5 | . . . 4 ⊢ (𝜑 → 𝐹 = (Scalar‘𝐿)) | |
10 | 9 | fveq2d 6357 | . . 3 ⊢ (𝜑 → (Base‘𝐹) = (Base‘(Scalar‘𝐿))) |
11 | 5, 10 | syl5eq 2806 | . 2 ⊢ (𝜑 → 𝑃 = (Base‘(Scalar‘𝐿))) |
12 | lmodpropd.3 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) | |
13 | 6, 9 | eqtr3d 2796 | . . . . 5 ⊢ (𝜑 → (Scalar‘𝐾) = (Scalar‘𝐿)) |
14 | 13 | adantr 472 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) → (Scalar‘𝐾) = (Scalar‘𝐿)) |
15 | 14 | fveq2d 6357 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) → (+g‘(Scalar‘𝐾)) = (+g‘(Scalar‘𝐿))) |
16 | 15 | oveqd 6831 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) → (𝑥(+g‘(Scalar‘𝐾))𝑦) = (𝑥(+g‘(Scalar‘𝐿))𝑦)) |
17 | 14 | fveq2d 6357 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) → (.r‘(Scalar‘𝐾)) = (.r‘(Scalar‘𝐿))) |
18 | 17 | oveqd 6831 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) → (𝑥(.r‘(Scalar‘𝐾))𝑦) = (𝑥(.r‘(Scalar‘𝐿))𝑦)) |
19 | lmodpropd.7 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) | |
20 | 1, 2, 3, 4, 8, 11, 12, 16, 18, 19 | lmodprop2d 19147 | 1 ⊢ (𝜑 → (𝐾 ∈ LMod ↔ 𝐿 ∈ LMod)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ‘cfv 6049 (class class class)co 6814 Basecbs 16079 +gcplusg 16163 .rcmulr 16164 Scalarcsca 16166 ·𝑠 cvsca 16167 LModclmod 19085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-nn 11233 df-2 11291 df-ndx 16082 df-slot 16083 df-base 16085 df-sets 16086 df-plusg 16176 df-0g 16324 df-mgm 17463 df-sgrp 17505 df-mnd 17516 df-grp 17646 df-mgp 18710 df-ur 18722 df-ring 18769 df-lmod 19087 |
This theorem is referenced by: lmhmpropd 19295 lvecpropd 19389 assapropd 19549 opsrlmod 19838 matlmod 20457 |
Copyright terms: Public domain | W3C validator |