![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmodindp1 | Structured version Visualization version GIF version |
Description: Two independent (non-colinear) vectors have nonzero sum. (Contributed by NM, 22-Apr-2015.) |
Ref | Expression |
---|---|
lmodindp1.v | ⊢ 𝑉 = (Base‘𝑊) |
lmodindp1.p | ⊢ + = (+g‘𝑊) |
lmodindp1.o | ⊢ 0 = (0g‘𝑊) |
lmodindp1.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lmodindp1.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lmodindp1.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
lmodindp1.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
lmodindp1.q | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
Ref | Expression |
---|---|
lmodindp1 | ⊢ (𝜑 → (𝑋 + 𝑌) ≠ 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodindp1.q | . 2 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
2 | lmodindp1.w | . . . . . . . 8 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
3 | lmodindp1.x | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
4 | lmodindp1.v | . . . . . . . . 9 ⊢ 𝑉 = (Base‘𝑊) | |
5 | eqid 2760 | . . . . . . . . 9 ⊢ (invg‘𝑊) = (invg‘𝑊) | |
6 | lmodindp1.n | . . . . . . . . 9 ⊢ 𝑁 = (LSpan‘𝑊) | |
7 | 4, 5, 6 | lspsnneg 19228 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{((invg‘𝑊)‘𝑋)}) = (𝑁‘{𝑋})) |
8 | 2, 3, 7 | syl2anc 696 | . . . . . . 7 ⊢ (𝜑 → (𝑁‘{((invg‘𝑊)‘𝑋)}) = (𝑁‘{𝑋})) |
9 | 8 | eqcomd 2766 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{((invg‘𝑊)‘𝑋)})) |
10 | 9 | adantr 472 | . . . . 5 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) = 0 ) → (𝑁‘{𝑋}) = (𝑁‘{((invg‘𝑊)‘𝑋)})) |
11 | lmodgrp 19092 | . . . . . . . . . 10 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) | |
12 | 2, 11 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑊 ∈ Grp) |
13 | lmodindp1.y | . . . . . . . . 9 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
14 | lmodindp1.p | . . . . . . . . . 10 ⊢ + = (+g‘𝑊) | |
15 | lmodindp1.o | . . . . . . . . . 10 ⊢ 0 = (0g‘𝑊) | |
16 | 4, 14, 15, 5 | grpinvid1 17691 | . . . . . . . . 9 ⊢ ((𝑊 ∈ Grp ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (((invg‘𝑊)‘𝑋) = 𝑌 ↔ (𝑋 + 𝑌) = 0 )) |
17 | 12, 3, 13, 16 | syl3anc 1477 | . . . . . . . 8 ⊢ (𝜑 → (((invg‘𝑊)‘𝑋) = 𝑌 ↔ (𝑋 + 𝑌) = 0 )) |
18 | 17 | biimpar 503 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) = 0 ) → ((invg‘𝑊)‘𝑋) = 𝑌) |
19 | 18 | sneqd 4333 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) = 0 ) → {((invg‘𝑊)‘𝑋)} = {𝑌}) |
20 | 19 | fveq2d 6357 | . . . . 5 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) = 0 ) → (𝑁‘{((invg‘𝑊)‘𝑋)}) = (𝑁‘{𝑌})) |
21 | 10, 20 | eqtrd 2794 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) = 0 ) → (𝑁‘{𝑋}) = (𝑁‘{𝑌})) |
22 | 21 | ex 449 | . . 3 ⊢ (𝜑 → ((𝑋 + 𝑌) = 0 → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))) |
23 | 22 | necon3d 2953 | . 2 ⊢ (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) → (𝑋 + 𝑌) ≠ 0 )) |
24 | 1, 23 | mpd 15 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) ≠ 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 {csn 4321 ‘cfv 6049 (class class class)co 6814 Basecbs 16079 +gcplusg 16163 0gc0g 16322 Grpcgrp 17643 invgcminusg 17644 LModclmod 19085 LSpanclspn 19193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-nn 11233 df-2 11291 df-ndx 16082 df-slot 16083 df-base 16085 df-sets 16086 df-plusg 16176 df-0g 16324 df-mgm 17463 df-sgrp 17505 df-mnd 17516 df-grp 17646 df-minusg 17647 df-sbg 17648 df-mgp 18710 df-ur 18722 df-ring 18769 df-lmod 19087 df-lss 19155 df-lsp 19194 |
This theorem is referenced by: lcfrlem17 37368 mapdh6aN 37544 mapdh6eN 37549 hdmap1l6a 37619 hdmap1l6e 37624 hdmaprnlem3eN 37670 |
Copyright terms: Public domain | W3C validator |