Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodfopne Structured version   Visualization version   GIF version

Theorem lmodfopne 19024
 Description: The (functionalized) operations of a left module (over a nonzero ring) cannot be identical. (Contributed by NM, 31-May-2008.) (Revised by AV, 2-Oct-2021.)
Hypotheses
Ref Expression
lmodfopne.t · = ( ·sf𝑊)
lmodfopne.a + = (+𝑓𝑊)
lmodfopne.v 𝑉 = (Base‘𝑊)
lmodfopne.s 𝑆 = (Scalar‘𝑊)
lmodfopne.k 𝐾 = (Base‘𝑆)
lmodfopne.0 0 = (0g𝑆)
lmodfopne.1 1 = (1r𝑆)
Assertion
Ref Expression
lmodfopne ((𝑊 ∈ LMod ∧ 10 ) → +· )

Proof of Theorem lmodfopne
StepHypRef Expression
1 lmodfopne.t . . . . . 6 · = ( ·sf𝑊)
2 lmodfopne.a . . . . . 6 + = (+𝑓𝑊)
3 lmodfopne.v . . . . . 6 𝑉 = (Base‘𝑊)
4 lmodfopne.s . . . . . 6 𝑆 = (Scalar‘𝑊)
5 lmodfopne.k . . . . . 6 𝐾 = (Base‘𝑆)
6 lmodfopne.0 . . . . . 6 0 = (0g𝑆)
7 lmodfopne.1 . . . . . 6 1 = (1r𝑆)
81, 2, 3, 4, 5, 6, 7lmodfopnelem2 19023 . . . . 5 ((𝑊 ∈ LMod ∧ + = · ) → ( 0𝑉1𝑉))
9 simpl 474 . . . . . . . 8 (( 0𝑉1𝑉) → 0𝑉)
10 eqid 2724 . . . . . . . . . 10 (0g𝑊) = (0g𝑊)
113, 10lmod0vcl 19015 . . . . . . . . 9 (𝑊 ∈ LMod → (0g𝑊) ∈ 𝑉)
1211adantr 472 . . . . . . . 8 ((𝑊 ∈ LMod ∧ + = · ) → (0g𝑊) ∈ 𝑉)
13 eqid 2724 . . . . . . . . . 10 (+g𝑊) = (+g𝑊)
143, 13, 2plusfval 17370 . . . . . . . . 9 (( 0𝑉 ∧ (0g𝑊) ∈ 𝑉) → ( 0 + (0g𝑊)) = ( 0 (+g𝑊)(0g𝑊)))
1514eqcomd 2730 . . . . . . . 8 (( 0𝑉 ∧ (0g𝑊) ∈ 𝑉) → ( 0 (+g𝑊)(0g𝑊)) = ( 0 + (0g𝑊)))
169, 12, 15syl2anr 496 . . . . . . 7 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → ( 0 (+g𝑊)(0g𝑊)) = ( 0 + (0g𝑊)))
17 oveq 6771 . . . . . . . 8 ( + = · → ( 0 + (0g𝑊)) = ( 0 · (0g𝑊)))
1817ad2antlr 765 . . . . . . 7 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → ( 0 + (0g𝑊)) = ( 0 · (0g𝑊)))
1916, 18eqtrd 2758 . . . . . 6 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → ( 0 (+g𝑊)(0g𝑊)) = ( 0 · (0g𝑊)))
20 lmodgrp 18993 . . . . . . . 8 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
2120adantr 472 . . . . . . 7 ((𝑊 ∈ LMod ∧ + = · ) → 𝑊 ∈ Grp)
223, 13, 10grprid 17575 . . . . . . 7 ((𝑊 ∈ Grp ∧ 0𝑉) → ( 0 (+g𝑊)(0g𝑊)) = 0 )
2321, 9, 22syl2an 495 . . . . . 6 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → ( 0 (+g𝑊)(0g𝑊)) = 0 )
244, 5, 6lmod0cl 19012 . . . . . . . . . . 11 (𝑊 ∈ LMod → 0𝐾)
2524, 11jca 555 . . . . . . . . . 10 (𝑊 ∈ LMod → ( 0𝐾 ∧ (0g𝑊) ∈ 𝑉))
2625adantr 472 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ + = · ) → ( 0𝐾 ∧ (0g𝑊) ∈ 𝑉))
2726adantr 472 . . . . . . . 8 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → ( 0𝐾 ∧ (0g𝑊) ∈ 𝑉))
28 eqid 2724 . . . . . . . . 9 ( ·𝑠𝑊) = ( ·𝑠𝑊)
293, 4, 5, 1, 28scafval 19005 . . . . . . . 8 (( 0𝐾 ∧ (0g𝑊) ∈ 𝑉) → ( 0 · (0g𝑊)) = ( 0 ( ·𝑠𝑊)(0g𝑊)))
3027, 29syl 17 . . . . . . 7 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → ( 0 · (0g𝑊)) = ( 0 ( ·𝑠𝑊)(0g𝑊)))
3124ancli 575 . . . . . . . . . 10 (𝑊 ∈ LMod → (𝑊 ∈ LMod ∧ 0𝐾))
3231adantr 472 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ + = · ) → (𝑊 ∈ LMod ∧ 0𝐾))
3332adantr 472 . . . . . . . 8 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → (𝑊 ∈ LMod ∧ 0𝐾))
344, 28, 5, 10lmodvs0 19020 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 0𝐾) → ( 0 ( ·𝑠𝑊)(0g𝑊)) = (0g𝑊))
3533, 34syl 17 . . . . . . 7 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → ( 0 ( ·𝑠𝑊)(0g𝑊)) = (0g𝑊))
36 simpr 479 . . . . . . . . . 10 (( 0𝑉1𝑉) → 1𝑉)
373, 13, 10grprid 17575 . . . . . . . . . 10 ((𝑊 ∈ Grp ∧ 1𝑉) → ( 1 (+g𝑊)(0g𝑊)) = 1 )
3821, 36, 37syl2an 495 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → ( 1 (+g𝑊)(0g𝑊)) = 1 )
394, 5, 7lmod1cl 19013 . . . . . . . . . . . 12 (𝑊 ∈ LMod → 1𝐾)
4039adantr 472 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ + = · ) → 1𝐾)
413, 4, 5, 1, 28scafval 19005 . . . . . . . . . . 11 (( 1𝐾1𝑉) → ( 1 · 1 ) = ( 1 ( ·𝑠𝑊) 1 ))
4240, 36, 41syl2an 495 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → ( 1 · 1 ) = ( 1 ( ·𝑠𝑊) 1 ))
433, 4, 28, 7lmodvs1 19014 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ 1𝑉) → ( 1 ( ·𝑠𝑊) 1 ) = 1 )
4443ad2ant2rl 802 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → ( 1 ( ·𝑠𝑊) 1 ) = 1 )
4542, 44eqtrd 2758 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → ( 1 · 1 ) = 1 )
46 oveq 6771 . . . . . . . . . . . 12 ( + = · → ( 1 + 1 ) = ( 1 · 1 ))
4746eqcomd 2730 . . . . . . . . . . 11 ( + = · → ( 1 · 1 ) = ( 1 + 1 ))
4847ad2antlr 765 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → ( 1 · 1 ) = ( 1 + 1 ))
4936, 36jca 555 . . . . . . . . . . . 12 (( 0𝑉1𝑉) → ( 1𝑉1𝑉))
5049adantl 473 . . . . . . . . . . 11 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → ( 1𝑉1𝑉))
513, 13, 2plusfval 17370 . . . . . . . . . . 11 (( 1𝑉1𝑉) → ( 1 + 1 ) = ( 1 (+g𝑊) 1 ))
5250, 51syl 17 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → ( 1 + 1 ) = ( 1 (+g𝑊) 1 ))
5348, 52eqtrd 2758 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → ( 1 · 1 ) = ( 1 (+g𝑊) 1 ))
5438, 45, 533eqtr2d 2764 . . . . . . . 8 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → ( 1 (+g𝑊)(0g𝑊)) = ( 1 (+g𝑊) 1 ))
5521adantr 472 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → 𝑊 ∈ Grp)
5612adantr 472 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → (0g𝑊) ∈ 𝑉)
5736adantl 473 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → 1𝑉)
583, 13grplcan 17599 . . . . . . . . 9 ((𝑊 ∈ Grp ∧ ((0g𝑊) ∈ 𝑉1𝑉1𝑉)) → (( 1 (+g𝑊)(0g𝑊)) = ( 1 (+g𝑊) 1 ) ↔ (0g𝑊) = 1 ))
5955, 56, 57, 57, 58syl13anc 1441 . . . . . . . 8 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → (( 1 (+g𝑊)(0g𝑊)) = ( 1 (+g𝑊) 1 ) ↔ (0g𝑊) = 1 ))
6054, 59mpbid 222 . . . . . . 7 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → (0g𝑊) = 1 )
6130, 35, 603eqtrd 2762 . . . . . 6 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → ( 0 · (0g𝑊)) = 1 )
6219, 23, 613eqtr3rd 2767 . . . . 5 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → 1 = 0 )
638, 62mpdan 705 . . . 4 ((𝑊 ∈ LMod ∧ + = · ) → 1 = 0 )
6463ex 449 . . 3 (𝑊 ∈ LMod → ( + = ·1 = 0 ))
6564necon3d 2917 . 2 (𝑊 ∈ LMod → ( 10+· ))
6665imp 444 1 ((𝑊 ∈ LMod ∧ 10 ) → +· )
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1596   ∈ wcel 2103   ≠ wne 2896  ‘cfv 6001  (class class class)co 6765  Basecbs 15980  +gcplusg 16064  Scalarcsca 16067   ·𝑠 cvsca 16068  0gc0g 16223  +𝑓cplusf 17361  Grpcgrp 17544  1rcur 18622  LModclmod 18986   ·sf cscaf 18987 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-om 7183  df-1st 7285  df-2nd 7286  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-er 7862  df-en 8073  df-dom 8074  df-sdom 8075  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-nn 11134  df-2 11192  df-ndx 15983  df-slot 15984  df-base 15986  df-sets 15987  df-plusg 16077  df-0g 16225  df-plusf 17363  df-mgm 17364  df-sgrp 17406  df-mnd 17417  df-grp 17547  df-minusg 17548  df-mgp 18611  df-ur 18623  df-ring 18670  df-lmod 18988  df-scaf 18989 This theorem is referenced by:  clmopfne  23017
 Copyright terms: Public domain W3C validator