![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmodfgrp | Structured version Visualization version GIF version |
Description: The scalar component of a left module is an additive group. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lmodring.1 | ⊢ 𝐹 = (Scalar‘𝑊) |
Ref | Expression |
---|---|
lmodfgrp | ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodring.1 | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
2 | 1 | lmodring 19044 | . 2 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
3 | ringgrp 18723 | . 2 ⊢ (𝐹 ∈ Ring → 𝐹 ∈ Grp) | |
4 | 2, 3 | syl 17 | 1 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1620 ∈ wcel 2127 ‘cfv 6037 Scalarcsca 16117 Grpcgrp 17594 Ringcrg 18718 LModclmod 19036 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-nul 4929 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ral 3043 df-rex 3044 df-rab 3047 df-v 3330 df-sbc 3565 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-nul 4047 df-if 4219 df-sn 4310 df-pr 4312 df-op 4316 df-uni 4577 df-br 4793 df-iota 6000 df-fv 6045 df-ov 6804 df-ring 18720 df-lmod 19038 |
This theorem is referenced by: lmodacl 19047 lmodsn0 19049 lmodvneg1 19079 lssvsubcl 19117 lspsnneg 19179 lvecvscan2 19285 lspexch 19302 lspsolvlem 19315 ipsubdir 20160 ipsubdi 20161 ip2eq 20171 ocvlss 20189 lsmcss 20209 islindf4 20350 clmfgrp 23042 lflmul 34827 lkrlss 34854 eqlkr 34858 lkrlsp 34861 lshpkrlem1 34869 ldualvsubval 34916 lcfrlem1 37302 lcdvsubval 37378 lmodvsmdi 42642 ascl0 42644 lincsum 42697 lincsumcl 42699 lincext1 42722 lindslinindsimp1 42725 lindslinindimp2lem1 42726 lindslinindsimp2lem5 42730 ldepsprlem 42740 ldepspr 42741 lincresunit3lem3 42742 lincresunit3lem1 42747 lincresunit3lem2 42748 lincresunit3 42749 |
Copyright terms: Public domain | W3C validator |