MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodcom Structured version   Visualization version   GIF version

Theorem lmodcom 19119
Description: Left module vector sum is commutative. (Contributed by Gérard Lang, 25-Jun-2014.)
Hypotheses
Ref Expression
lmodcom.v 𝑉 = (Base‘𝑊)
lmodcom.a + = (+g𝑊)
Assertion
Ref Expression
lmodcom ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 + 𝑌) = (𝑌 + 𝑋))

Proof of Theorem lmodcom
StepHypRef Expression
1 simp1 1130 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → 𝑊 ∈ LMod)
2 eqid 2771 . . . . . . . . . . 11 (Scalar‘𝑊) = (Scalar‘𝑊)
3 eqid 2771 . . . . . . . . . . 11 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
4 eqid 2771 . . . . . . . . . . 11 (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊))
52, 3, 4lmod1cl 19100 . . . . . . . . . 10 (𝑊 ∈ LMod → (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)))
61, 5syl 17 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)))
7 eqid 2771 . . . . . . . . . 10 (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊))
82, 3, 7lmodacl 19084 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)) ∧ (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊))) → ((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊))) ∈ (Base‘(Scalar‘𝑊)))
91, 6, 6, 8syl3anc 1476 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊))) ∈ (Base‘(Scalar‘𝑊)))
10 simp2 1131 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → 𝑋𝑉)
11 simp3 1132 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → 𝑌𝑉)
12 lmodcom.v . . . . . . . . 9 𝑉 = (Base‘𝑊)
13 lmodcom.a . . . . . . . . 9 + = (+g𝑊)
14 eqid 2771 . . . . . . . . 9 ( ·𝑠𝑊) = ( ·𝑠𝑊)
1512, 13, 2, 14, 3lmodvsdi 19096 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊))) ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑋𝑉𝑌𝑉)) → (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)(𝑋 + 𝑌)) = ((((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑋) + (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑌)))
161, 9, 10, 11, 15syl13anc 1478 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)(𝑋 + 𝑌)) = ((((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑋) + (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑌)))
1712, 13lmodvacl 19087 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 + 𝑌) ∈ 𝑉)
1812, 13, 2, 14, 3, 7lmodvsdir 19097 . . . . . . . 8 ((𝑊 ∈ LMod ∧ ((1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)) ∧ (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋 + 𝑌) ∈ 𝑉)) → (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)(𝑋 + 𝑌)) = (((1r‘(Scalar‘𝑊))( ·𝑠𝑊)(𝑋 + 𝑌)) + ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)(𝑋 + 𝑌))))
191, 6, 6, 17, 18syl13anc 1478 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)(𝑋 + 𝑌)) = (((1r‘(Scalar‘𝑊))( ·𝑠𝑊)(𝑋 + 𝑌)) + ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)(𝑋 + 𝑌))))
2016, 19eqtr3d 2807 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑋) + (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑌)) = (((1r‘(Scalar‘𝑊))( ·𝑠𝑊)(𝑋 + 𝑌)) + ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)(𝑋 + 𝑌))))
2112, 13, 2, 14, 3, 7lmodvsdir 19097 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ ((1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)) ∧ (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑋𝑉)) → (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑋) = (((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋) + ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋)))
221, 6, 6, 10, 21syl13anc 1478 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑋) = (((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋) + ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋)))
2312, 2, 14, 4lmodvs1 19101 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋) = 𝑋)
241, 10, 23syl2anc 573 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋) = 𝑋)
2524, 24oveq12d 6811 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋) + ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋)) = (𝑋 + 𝑋))
2622, 25eqtrd 2805 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑋) = (𝑋 + 𝑋))
2712, 13, 2, 14, 3, 7lmodvsdir 19097 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ ((1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)) ∧ (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑌𝑉)) → (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑌) = (((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) + ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌)))
281, 6, 6, 11, 27syl13anc 1478 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑌) = (((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) + ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌)))
2912, 2, 14, 4lmodvs1 19101 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) = 𝑌)
301, 11, 29syl2anc 573 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) = 𝑌)
3130, 30oveq12d 6811 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) + ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌)) = (𝑌 + 𝑌))
3228, 31eqtrd 2805 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑌) = (𝑌 + 𝑌))
3326, 32oveq12d 6811 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑋) + (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑌)) = ((𝑋 + 𝑋) + (𝑌 + 𝑌)))
3412, 2, 14, 4lmodvs1 19101 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑋 + 𝑌) ∈ 𝑉) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)(𝑋 + 𝑌)) = (𝑋 + 𝑌))
351, 17, 34syl2anc 573 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)(𝑋 + 𝑌)) = (𝑋 + 𝑌))
3635, 35oveq12d 6811 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (((1r‘(Scalar‘𝑊))( ·𝑠𝑊)(𝑋 + 𝑌)) + ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)(𝑋 + 𝑌))) = ((𝑋 + 𝑌) + (𝑋 + 𝑌)))
3720, 33, 363eqtr3d 2813 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((𝑋 + 𝑋) + (𝑌 + 𝑌)) = ((𝑋 + 𝑌) + (𝑋 + 𝑌)))
3812, 13lmodvacl 19087 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑋𝑉) → (𝑋 + 𝑋) ∈ 𝑉)
391, 10, 10, 38syl3anc 1476 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 + 𝑋) ∈ 𝑉)
4012, 13lmodass 19088 . . . . . 6 ((𝑊 ∈ LMod ∧ ((𝑋 + 𝑋) ∈ 𝑉𝑌𝑉𝑌𝑉)) → (((𝑋 + 𝑋) + 𝑌) + 𝑌) = ((𝑋 + 𝑋) + (𝑌 + 𝑌)))
411, 39, 11, 11, 40syl13anc 1478 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (((𝑋 + 𝑋) + 𝑌) + 𝑌) = ((𝑋 + 𝑋) + (𝑌 + 𝑌)))
4212, 13lmodass 19088 . . . . . 6 ((𝑊 ∈ LMod ∧ ((𝑋 + 𝑌) ∈ 𝑉𝑋𝑉𝑌𝑉)) → (((𝑋 + 𝑌) + 𝑋) + 𝑌) = ((𝑋 + 𝑌) + (𝑋 + 𝑌)))
431, 17, 10, 11, 42syl13anc 1478 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (((𝑋 + 𝑌) + 𝑋) + 𝑌) = ((𝑋 + 𝑌) + (𝑋 + 𝑌)))
4437, 41, 433eqtr4d 2815 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (((𝑋 + 𝑋) + 𝑌) + 𝑌) = (((𝑋 + 𝑌) + 𝑋) + 𝑌))
45 lmodgrp 19080 . . . . . 6 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
461, 45syl 17 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → 𝑊 ∈ Grp)
4712, 13lmodvacl 19087 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑋 + 𝑋) ∈ 𝑉𝑌𝑉) → ((𝑋 + 𝑋) + 𝑌) ∈ 𝑉)
481, 39, 11, 47syl3anc 1476 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((𝑋 + 𝑋) + 𝑌) ∈ 𝑉)
4912, 13lmodvacl 19087 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑋 + 𝑌) ∈ 𝑉𝑋𝑉) → ((𝑋 + 𝑌) + 𝑋) ∈ 𝑉)
501, 17, 10, 49syl3anc 1476 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((𝑋 + 𝑌) + 𝑋) ∈ 𝑉)
5112, 13grprcan 17663 . . . . 5 ((𝑊 ∈ Grp ∧ (((𝑋 + 𝑋) + 𝑌) ∈ 𝑉 ∧ ((𝑋 + 𝑌) + 𝑋) ∈ 𝑉𝑌𝑉)) → ((((𝑋 + 𝑋) + 𝑌) + 𝑌) = (((𝑋 + 𝑌) + 𝑋) + 𝑌) ↔ ((𝑋 + 𝑋) + 𝑌) = ((𝑋 + 𝑌) + 𝑋)))
5246, 48, 50, 11, 51syl13anc 1478 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((((𝑋 + 𝑋) + 𝑌) + 𝑌) = (((𝑋 + 𝑌) + 𝑋) + 𝑌) ↔ ((𝑋 + 𝑋) + 𝑌) = ((𝑋 + 𝑌) + 𝑋)))
5344, 52mpbid 222 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((𝑋 + 𝑋) + 𝑌) = ((𝑋 + 𝑌) + 𝑋))
5412, 13lmodass 19088 . . . 4 ((𝑊 ∈ LMod ∧ (𝑋𝑉𝑋𝑉𝑌𝑉)) → ((𝑋 + 𝑋) + 𝑌) = (𝑋 + (𝑋 + 𝑌)))
551, 10, 10, 11, 54syl13anc 1478 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((𝑋 + 𝑋) + 𝑌) = (𝑋 + (𝑋 + 𝑌)))
5612, 13lmodass 19088 . . . 4 ((𝑊 ∈ LMod ∧ (𝑋𝑉𝑌𝑉𝑋𝑉)) → ((𝑋 + 𝑌) + 𝑋) = (𝑋 + (𝑌 + 𝑋)))
571, 10, 11, 10, 56syl13anc 1478 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((𝑋 + 𝑌) + 𝑋) = (𝑋 + (𝑌 + 𝑋)))
5853, 55, 573eqtr3d 2813 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 + (𝑋 + 𝑌)) = (𝑋 + (𝑌 + 𝑋)))
5912, 13lmodvacl 19087 . . . 4 ((𝑊 ∈ LMod ∧ 𝑌𝑉𝑋𝑉) → (𝑌 + 𝑋) ∈ 𝑉)
60593com23 1120 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑌 + 𝑋) ∈ 𝑉)
6112, 13lmodlcan 19089 . . 3 ((𝑊 ∈ LMod ∧ ((𝑋 + 𝑌) ∈ 𝑉 ∧ (𝑌 + 𝑋) ∈ 𝑉𝑋𝑉)) → ((𝑋 + (𝑋 + 𝑌)) = (𝑋 + (𝑌 + 𝑋)) ↔ (𝑋 + 𝑌) = (𝑌 + 𝑋)))
621, 17, 60, 10, 61syl13anc 1478 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((𝑋 + (𝑋 + 𝑌)) = (𝑋 + (𝑌 + 𝑋)) ↔ (𝑋 + 𝑌) = (𝑌 + 𝑋)))
6358, 62mpbid 222 1 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  w3a 1071   = wceq 1631  wcel 2145  cfv 6031  (class class class)co 6793  Basecbs 16064  +gcplusg 16149  Scalarcsca 16152   ·𝑠 cvsca 16153  Grpcgrp 17630  1rcur 18709  LModclmod 19073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-2 11281  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-plusg 16162  df-0g 16310  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-grp 17633  df-minusg 17634  df-mgp 18698  df-ur 18710  df-ring 18757  df-lmod 19075
This theorem is referenced by:  lmodabl  19120  lssvsubcl  19154  lssvancl2  19156  lspsolv  19357  lflsub  34876  lcfrlem21  37373  lcfrlem42  37394  mapdindp4  37533
  Copyright terms: Public domain W3C validator