![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmodbn0 | Structured version Visualization version GIF version |
Description: The base set of a left module is nonempty. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lmodbn0.b | ⊢ 𝐵 = (Base‘𝑊) |
Ref | Expression |
---|---|
lmodbn0 | ⊢ (𝑊 ∈ LMod → 𝐵 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodgrp 18993 | . 2 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) | |
2 | lmodbn0.b | . . 3 ⊢ 𝐵 = (Base‘𝑊) | |
3 | 2 | grpbn0 17573 | . 2 ⊢ (𝑊 ∈ Grp → 𝐵 ≠ ∅) |
4 | 1, 3 | syl 17 | 1 ⊢ (𝑊 ∈ LMod → 𝐵 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1596 ∈ wcel 2103 ≠ wne 2896 ∅c0 4023 ‘cfv 6001 Basecbs 15980 Grpcgrp 17544 LModclmod 18986 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-ral 3019 df-rex 3020 df-reu 3021 df-rmo 3022 df-rab 3023 df-v 3306 df-sbc 3542 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-nul 4024 df-if 4195 df-sn 4286 df-pr 4288 df-op 4292 df-uni 4545 df-br 4761 df-opab 4821 df-mpt 4838 df-id 5128 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-iota 5964 df-fun 6003 df-fv 6009 df-riota 6726 df-ov 6768 df-0g 16225 df-mgm 17364 df-sgrp 17406 df-mnd 17417 df-grp 17547 df-lmod 18988 |
This theorem is referenced by: lmodfopnelem1 19022 lss1 19062 lmod0rng 42295 |
Copyright terms: Public domain | W3C validator |