Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmod1zrnlvec Structured version   Visualization version   GIF version

Theorem lmod1zrnlvec 42048
Description: There is a (left) module (a zero module) which is not a (left) vector space. (Contributed by AV, 29-Apr-2019.)
Hypotheses
Ref Expression
lmod1zr.r 𝑅 = {⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩}
lmod1zr.m 𝑀 = ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), {⟨⟨𝑍, 𝐼⟩, 𝐼⟩}⟩})
Assertion
Ref Expression
lmod1zrnlvec ((𝐼𝑉𝑍𝑊) → 𝑀 ∉ LVec)

Proof of Theorem lmod1zrnlvec
StepHypRef Expression
1 lmod1zr.r . . . . . 6 𝑅 = {⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩}
2 tpex 6942 . . . . . 6 {⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩} ∈ V
31, 2eqeltri 2695 . . . . 5 𝑅 ∈ V
4 lmod1zr.m . . . . . 6 𝑀 = ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), {⟨⟨𝑍, 𝐼⟩, 𝐼⟩}⟩})
54lmodsca 16001 . . . . 5 (𝑅 ∈ V → 𝑅 = (Scalar‘𝑀))
63, 5mp1i 13 . . . 4 ((𝐼𝑉𝑍𝑊) → 𝑅 = (Scalar‘𝑀))
71rng1nnzr 19255 . . . . . . 7 (𝑍𝑊𝑅 ∉ NzRing)
8 df-nel 2895 . . . . . . 7 (𝑅 ∉ NzRing ↔ ¬ 𝑅 ∈ NzRing)
97, 8sylib 208 . . . . . 6 (𝑍𝑊 → ¬ 𝑅 ∈ NzRing)
10 drngnzr 19243 . . . . . 6 (𝑅 ∈ DivRing → 𝑅 ∈ NzRing)
119, 10nsyl 135 . . . . 5 (𝑍𝑊 → ¬ 𝑅 ∈ DivRing)
1211adantl 482 . . . 4 ((𝐼𝑉𝑍𝑊) → ¬ 𝑅 ∈ DivRing)
136, 12eqneltrrd 2719 . . 3 ((𝐼𝑉𝑍𝑊) → ¬ (Scalar‘𝑀) ∈ DivRing)
1413intnand 961 . 2 ((𝐼𝑉𝑍𝑊) → ¬ (𝑀 ∈ LMod ∧ (Scalar‘𝑀) ∈ DivRing))
15 df-nel 2895 . . 3 (𝑀 ∉ LVec ↔ ¬ 𝑀 ∈ LVec)
16 eqid 2620 . . . 4 (Scalar‘𝑀) = (Scalar‘𝑀)
1716islvec 19085 . . 3 (𝑀 ∈ LVec ↔ (𝑀 ∈ LMod ∧ (Scalar‘𝑀) ∈ DivRing))
1815, 17xchbinx 324 . 2 (𝑀 ∉ LVec ↔ ¬ (𝑀 ∈ LMod ∧ (Scalar‘𝑀) ∈ DivRing))
1914, 18sylibr 224 1 ((𝐼𝑉𝑍𝑊) → 𝑀 ∉ LVec)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1481  wcel 1988  wnel 2894  Vcvv 3195  cun 3565  {csn 4168  {ctp 4172  cop 4174  cfv 5876  ndxcnx 15835  Basecbs 15838  +gcplusg 15922  .rcmulr 15923  Scalarcsca 15925   ·𝑠 cvsca 15926  DivRingcdr 18728  LModclmod 18844  LVecclvec 19083  NzRingcnzr 19238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-tpos 7337  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-oadd 7549  df-er 7727  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-card 8750  df-cda 8975  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-nn 11006  df-2 11064  df-3 11065  df-4 11066  df-5 11067  df-6 11068  df-n0 11278  df-xnn0 11349  df-z 11363  df-uz 11673  df-fz 12312  df-hash 13101  df-struct 15840  df-ndx 15841  df-slot 15842  df-base 15844  df-sets 15845  df-plusg 15935  df-mulr 15936  df-sca 15938  df-vsca 15939  df-0g 16083  df-mgm 17223  df-sgrp 17265  df-mnd 17276  df-grp 17406  df-minusg 17407  df-mgp 18471  df-ur 18483  df-ring 18530  df-oppr 18604  df-dvdsr 18622  df-unit 18623  df-drng 18730  df-lvec 19084  df-nzr 19239
This theorem is referenced by:  lvecpsslmod  42061
  Copyright terms: Public domain W3C validator