Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmod1zr Structured version   Visualization version   GIF version

Theorem lmod1zr 42607
Description: The (smallest) structure representing a zero module over a zero ring. (Contributed by AV, 29-Apr-2019.)
Hypotheses
Ref Expression
lmod1zr.r 𝑅 = {⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩}
lmod1zr.m 𝑀 = ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), {⟨⟨𝑍, 𝐼⟩, 𝐼⟩}⟩})
Assertion
Ref Expression
lmod1zr ((𝐼𝑉𝑍𝑊) → 𝑀 ∈ LMod)

Proof of Theorem lmod1zr
Dummy variables 𝑎 𝑏 𝑖 𝑝 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmod1zr.m . . 3 𝑀 = ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), {⟨⟨𝑍, 𝐼⟩, 𝐼⟩}⟩})
2 elsni 4227 . . . . . . . . . . 11 (𝑝 ∈ {⟨𝑍, 𝐼⟩} → 𝑝 = ⟨𝑍, 𝐼⟩)
3 fveq2 6229 . . . . . . . . . . . . 13 (𝑝 = ⟨𝑍, 𝐼⟩ → (2nd𝑝) = (2nd ‘⟨𝑍, 𝐼⟩))
43adantl 481 . . . . . . . . . . . 12 (((𝐼𝑉𝑍𝑊) ∧ 𝑝 = ⟨𝑍, 𝐼⟩) → (2nd𝑝) = (2nd ‘⟨𝑍, 𝐼⟩))
5 op2ndg 7223 . . . . . . . . . . . . . . 15 ((𝑍𝑊𝐼𝑉) → (2nd ‘⟨𝑍, 𝐼⟩) = 𝐼)
65ancoms 468 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑍𝑊) → (2nd ‘⟨𝑍, 𝐼⟩) = 𝐼)
7 snidg 4239 . . . . . . . . . . . . . . 15 (𝐼𝑉𝐼 ∈ {𝐼})
87adantr 480 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑍𝑊) → 𝐼 ∈ {𝐼})
96, 8eqeltrd 2730 . . . . . . . . . . . . 13 ((𝐼𝑉𝑍𝑊) → (2nd ‘⟨𝑍, 𝐼⟩) ∈ {𝐼})
109adantr 480 . . . . . . . . . . . 12 (((𝐼𝑉𝑍𝑊) ∧ 𝑝 = ⟨𝑍, 𝐼⟩) → (2nd ‘⟨𝑍, 𝐼⟩) ∈ {𝐼})
114, 10eqeltrd 2730 . . . . . . . . . . 11 (((𝐼𝑉𝑍𝑊) ∧ 𝑝 = ⟨𝑍, 𝐼⟩) → (2nd𝑝) ∈ {𝐼})
122, 11sylan2 490 . . . . . . . . . 10 (((𝐼𝑉𝑍𝑊) ∧ 𝑝 ∈ {⟨𝑍, 𝐼⟩}) → (2nd𝑝) ∈ {𝐼})
13 eqid 2651 . . . . . . . . . 10 (𝑝 ∈ {⟨𝑍, 𝐼⟩} ↦ (2nd𝑝)) = (𝑝 ∈ {⟨𝑍, 𝐼⟩} ↦ (2nd𝑝))
1412, 13fmptd 6425 . . . . . . . . 9 ((𝐼𝑉𝑍𝑊) → (𝑝 ∈ {⟨𝑍, 𝐼⟩} ↦ (2nd𝑝)):{⟨𝑍, 𝐼⟩}⟶{𝐼})
15 opex 4962 . . . . . . . . . 10 𝑍, 𝐼⟩ ∈ V
16 simpl 472 . . . . . . . . . 10 ((𝐼𝑉𝑍𝑊) → 𝐼𝑉)
17 fsng 6444 . . . . . . . . . 10 ((⟨𝑍, 𝐼⟩ ∈ V ∧ 𝐼𝑉) → ((𝑝 ∈ {⟨𝑍, 𝐼⟩} ↦ (2nd𝑝)):{⟨𝑍, 𝐼⟩}⟶{𝐼} ↔ (𝑝 ∈ {⟨𝑍, 𝐼⟩} ↦ (2nd𝑝)) = {⟨⟨𝑍, 𝐼⟩, 𝐼⟩}))
1815, 16, 17sylancr 696 . . . . . . . . 9 ((𝐼𝑉𝑍𝑊) → ((𝑝 ∈ {⟨𝑍, 𝐼⟩} ↦ (2nd𝑝)):{⟨𝑍, 𝐼⟩}⟶{𝐼} ↔ (𝑝 ∈ {⟨𝑍, 𝐼⟩} ↦ (2nd𝑝)) = {⟨⟨𝑍, 𝐼⟩, 𝐼⟩}))
1914, 18mpbid 222 . . . . . . . 8 ((𝐼𝑉𝑍𝑊) → (𝑝 ∈ {⟨𝑍, 𝐼⟩} ↦ (2nd𝑝)) = {⟨⟨𝑍, 𝐼⟩, 𝐼⟩})
20 xpsng 6446 . . . . . . . . . . 11 ((𝑍𝑊𝐼𝑉) → ({𝑍} × {𝐼}) = {⟨𝑍, 𝐼⟩})
2120ancoms 468 . . . . . . . . . 10 ((𝐼𝑉𝑍𝑊) → ({𝑍} × {𝐼}) = {⟨𝑍, 𝐼⟩})
2221eqcomd 2657 . . . . . . . . 9 ((𝐼𝑉𝑍𝑊) → {⟨𝑍, 𝐼⟩} = ({𝑍} × {𝐼}))
2322mpteq1d 4771 . . . . . . . 8 ((𝐼𝑉𝑍𝑊) → (𝑝 ∈ {⟨𝑍, 𝐼⟩} ↦ (2nd𝑝)) = (𝑝 ∈ ({𝑍} × {𝐼}) ↦ (2nd𝑝)))
2419, 23eqtr3d 2687 . . . . . . 7 ((𝐼𝑉𝑍𝑊) → {⟨⟨𝑍, 𝐼⟩, 𝐼⟩} = (𝑝 ∈ ({𝑍} × {𝐼}) ↦ (2nd𝑝)))
25 vex 3234 . . . . . . . . . 10 𝑧 ∈ V
26 vex 3234 . . . . . . . . . 10 𝑖 ∈ V
2725, 26op2ndd 7221 . . . . . . . . 9 (𝑝 = ⟨𝑧, 𝑖⟩ → (2nd𝑝) = 𝑖)
2827mpt2mpt 6794 . . . . . . . 8 (𝑝 ∈ ({𝑍} × {𝐼}) ↦ (2nd𝑝)) = (𝑧 ∈ {𝑍}, 𝑖 ∈ {𝐼} ↦ 𝑖)
2928a1i 11 . . . . . . 7 ((𝐼𝑉𝑍𝑊) → (𝑝 ∈ ({𝑍} × {𝐼}) ↦ (2nd𝑝)) = (𝑧 ∈ {𝑍}, 𝑖 ∈ {𝐼} ↦ 𝑖))
30 snex 4938 . . . . . . . . 9 {𝑍} ∈ V
31 lmod1zr.r . . . . . . . . . 10 𝑅 = {⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩}
3231rngbase 16048 . . . . . . . . 9 ({𝑍} ∈ V → {𝑍} = (Base‘𝑅))
3330, 32mp1i 13 . . . . . . . 8 ((𝐼𝑉𝑍𝑊) → {𝑍} = (Base‘𝑅))
34 eqidd 2652 . . . . . . . 8 ((𝐼𝑉𝑍𝑊) → {𝐼} = {𝐼})
35 mpt2eq12 6757 . . . . . . . 8 (({𝑍} = (Base‘𝑅) ∧ {𝐼} = {𝐼}) → (𝑧 ∈ {𝑍}, 𝑖 ∈ {𝐼} ↦ 𝑖) = (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖))
3633, 34, 35syl2anc 694 . . . . . . 7 ((𝐼𝑉𝑍𝑊) → (𝑧 ∈ {𝑍}, 𝑖 ∈ {𝐼} ↦ 𝑖) = (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖))
3724, 29, 363eqtrd 2689 . . . . . 6 ((𝐼𝑉𝑍𝑊) → {⟨⟨𝑍, 𝐼⟩, 𝐼⟩} = (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖))
3837opeq2d 4440 . . . . 5 ((𝐼𝑉𝑍𝑊) → ⟨( ·𝑠 ‘ndx), {⟨⟨𝑍, 𝐼⟩, 𝐼⟩}⟩ = ⟨( ·𝑠 ‘ndx), (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖)⟩)
3938sneqd 4222 . . . 4 ((𝐼𝑉𝑍𝑊) → {⟨( ·𝑠 ‘ndx), {⟨⟨𝑍, 𝐼⟩, 𝐼⟩}⟩} = {⟨( ·𝑠 ‘ndx), (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖)⟩})
4039uneq2d 3800 . . 3 ((𝐼𝑉𝑍𝑊) → ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), {⟨⟨𝑍, 𝐼⟩, 𝐼⟩}⟩}) = ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖)⟩}))
411, 40syl5eq 2697 . 2 ((𝐼𝑉𝑍𝑊) → 𝑀 = ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖)⟩}))
4231ring1 18648 . . 3 (𝑍𝑊𝑅 ∈ Ring)
43 eqidd 2652 . . . . . . . 8 (𝑧 = 𝑎𝑖 = 𝑖)
44 id 22 . . . . . . . 8 (𝑖 = 𝑏𝑖 = 𝑏)
4543, 44cbvmpt2v 6777 . . . . . . 7 (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖) = (𝑎 ∈ (Base‘𝑅), 𝑏 ∈ {𝐼} ↦ 𝑏)
4645opeq2i 4437 . . . . . 6 ⟨( ·𝑠 ‘ndx), (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖)⟩ = ⟨( ·𝑠 ‘ndx), (𝑎 ∈ (Base‘𝑅), 𝑏 ∈ {𝐼} ↦ 𝑏)⟩
4746sneqi 4221 . . . . 5 {⟨( ·𝑠 ‘ndx), (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖)⟩} = {⟨( ·𝑠 ‘ndx), (𝑎 ∈ (Base‘𝑅), 𝑏 ∈ {𝐼} ↦ 𝑏)⟩}
4847uneq2i 3797 . . . 4 ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖)⟩}) = ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑎 ∈ (Base‘𝑅), 𝑏 ∈ {𝐼} ↦ 𝑏)⟩})
4948lmod1 42606 . . 3 ((𝐼𝑉𝑅 ∈ Ring) → ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖)⟩}) ∈ LMod)
5042, 49sylan2 490 . 2 ((𝐼𝑉𝑍𝑊) → ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖)⟩}) ∈ LMod)
5141, 50eqeltrd 2730 1 ((𝐼𝑉𝑍𝑊) → 𝑀 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  Vcvv 3231  cun 3605  {csn 4210  {ctp 4214  cop 4216  cmpt 4762   × cxp 5141  wf 5922  cfv 5926  cmpt2 6692  2nd c2nd 7209  ndxcnx 15901  Basecbs 15904  +gcplusg 15988  .rcmulr 15989  Scalarcsca 15991   ·𝑠 cvsca 15992  Ringcrg 18593  LModclmod 18911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-plusg 16001  df-mulr 16002  df-sca 16004  df-vsca 16005  df-0g 16149  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-grp 17472  df-mgp 18536  df-ur 18548  df-ring 18595  df-lmod 18913
This theorem is referenced by:  lmodn0  42609  lvecpsslmod  42621
  Copyright terms: Public domain W3C validator