Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmod1 Structured version   Visualization version   GIF version

Theorem lmod1 42809
Description: The (smallest) structure representing a zero module over an arbitrary ring. (Contributed by AV, 29-Apr-2019.)
Hypothesis
Ref Expression
lmod1.m 𝑀 = ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)⟩})
Assertion
Ref Expression
lmod1 ((𝐼𝑉𝑅 ∈ Ring) → 𝑀 ∈ LMod)
Distinct variable groups:   𝑥,𝐼,𝑦   𝑥,𝑅,𝑦   𝑥,𝑉,𝑦   𝑥,𝑀,𝑦

Proof of Theorem lmod1
Dummy variables 𝑟 𝑞 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2760 . . . . 5 {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩} = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}
21grp1 17743 . . . 4 (𝐼𝑉 → {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩} ∈ Grp)
3 fvex 6363 . . . . . . 7 (Base‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}) ∈ V
4 lmod1.m . . . . . . . . 9 𝑀 = ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)⟩})
5 snex 5057 . . . . . . . . . . . . 13 {𝐼} ∈ V
61grpbase 16213 . . . . . . . . . . . . 13 ({𝐼} ∈ V → {𝐼} = (Base‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}))
75, 6ax-mp 5 . . . . . . . . . . . 12 {𝐼} = (Base‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩})
87opeq2i 4557 . . . . . . . . . . 11 ⟨(Base‘ndx), {𝐼}⟩ = ⟨(Base‘ndx), (Base‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩})⟩
9 tpeq1 4421 . . . . . . . . . . 11 (⟨(Base‘ndx), {𝐼}⟩ = ⟨(Base‘ndx), (Base‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩})⟩ → {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} = {⟨(Base‘ndx), (Base‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩})⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩})
108, 9ax-mp 5 . . . . . . . . . 10 {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} = {⟨(Base‘ndx), (Base‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩})⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩}
1110uneq1i 3906 . . . . . . . . 9 ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)⟩}) = ({⟨(Base‘ndx), (Base‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩})⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)⟩})
124, 11eqtri 2782 . . . . . . . 8 𝑀 = ({⟨(Base‘ndx), (Base‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩})⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)⟩})
1312lmodbase 16240 . . . . . . 7 ((Base‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}) ∈ V → (Base‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}) = (Base‘𝑀))
143, 13ax-mp 5 . . . . . 6 (Base‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}) = (Base‘𝑀)
1514eqcomi 2769 . . . . 5 (Base‘𝑀) = (Base‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩})
16 fvex 6363 . . . . . . 7 (+g‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}) ∈ V
17 snex 5057 . . . . . . . . . . . . 13 {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V
181grpplusg 16214 . . . . . . . . . . . . 13 ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V → {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} = (+g‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}))
1917, 18ax-mp 5 . . . . . . . . . . . 12 {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} = (+g‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩})
2019opeq2i 4557 . . . . . . . . . . 11 ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩ = ⟨(+g‘ndx), (+g‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩})⟩
21 tpeq2 4422 . . . . . . . . . . 11 (⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩ = ⟨(+g‘ndx), (+g‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩})⟩ → {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), (+g‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩})⟩, ⟨(Scalar‘ndx), 𝑅⟩})
2220, 21ax-mp 5 . . . . . . . . . 10 {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), (+g‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩})⟩, ⟨(Scalar‘ndx), 𝑅⟩}
2322uneq1i 3906 . . . . . . . . 9 ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)⟩}) = ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), (+g‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩})⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)⟩})
244, 23eqtri 2782 . . . . . . . 8 𝑀 = ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), (+g‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩})⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)⟩})
2524lmodplusg 16241 . . . . . . 7 ((+g‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}) ∈ V → (+g‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}) = (+g𝑀))
2616, 25ax-mp 5 . . . . . 6 (+g‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}) = (+g𝑀)
2726eqcomi 2769 . . . . 5 (+g𝑀) = (+g‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩})
2815, 27grpprop 17659 . . . 4 (𝑀 ∈ Grp ↔ {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩} ∈ Grp)
292, 28sylibr 224 . . 3 (𝐼𝑉𝑀 ∈ Grp)
3029adantr 472 . 2 ((𝐼𝑉𝑅 ∈ Ring) → 𝑀 ∈ Grp)
314lmodsca 16242 . . . . 5 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑀))
3231eqcomd 2766 . . . 4 (𝑅 ∈ Ring → (Scalar‘𝑀) = 𝑅)
3332adantl 473 . . 3 ((𝐼𝑉𝑅 ∈ Ring) → (Scalar‘𝑀) = 𝑅)
34 simpr 479 . . 3 ((𝐼𝑉𝑅 ∈ Ring) → 𝑅 ∈ Ring)
3533, 34eqeltrd 2839 . 2 ((𝐼𝑉𝑅 ∈ Ring) → (Scalar‘𝑀) ∈ Ring)
3633fveq2d 6357 . . . . . . 7 ((𝐼𝑉𝑅 ∈ Ring) → (Base‘(Scalar‘𝑀)) = (Base‘𝑅))
3736eleq2d 2825 . . . . . 6 ((𝐼𝑉𝑅 ∈ Ring) → (𝑞 ∈ (Base‘(Scalar‘𝑀)) ↔ 𝑞 ∈ (Base‘𝑅)))
3836eleq2d 2825 . . . . . 6 ((𝐼𝑉𝑅 ∈ Ring) → (𝑟 ∈ (Base‘(Scalar‘𝑀)) ↔ 𝑟 ∈ (Base‘𝑅)))
3937, 38anbi12d 749 . . . . 5 ((𝐼𝑉𝑅 ∈ Ring) → ((𝑞 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑀))) ↔ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))))
40 simpll 807 . . . . . . . . . 10 (((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → 𝐼𝑉)
41 simplr 809 . . . . . . . . . 10 (((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → 𝑅 ∈ Ring)
42 simprr 813 . . . . . . . . . 10 (((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → 𝑟 ∈ (Base‘𝑅))
4340, 41, 423jca 1123 . . . . . . . . 9 (((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → (𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)))
444lmod1lem1 42804 . . . . . . . . 9 ((𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → (𝑟( ·𝑠𝑀)𝐼) ∈ {𝐼})
4543, 44syl 17 . . . . . . . 8 (((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → (𝑟( ·𝑠𝑀)𝐼) ∈ {𝐼})
464lmod1lem2 42805 . . . . . . . . 9 ((𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)))
4743, 46syl 17 . . . . . . . 8 (((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)))
484lmod1lem3 42806 . . . . . . . 8 (((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = ((𝑞( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)))
4945, 47, 483jca 1123 . . . . . . 7 (((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → ((𝑟( ·𝑠𝑀)𝐼) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = ((𝑞( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼))))
504lmod1lem4 42807 . . . . . . 7 (((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → ((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝐼)))
514lmod1lem5 42808 . . . . . . . 8 ((𝐼𝑉𝑅 ∈ Ring) → ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝐼) = 𝐼)
5251adantr 472 . . . . . . 7 (((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝐼) = 𝐼)
5349, 50, 52jca32 559 . . . . . 6 (((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → (((𝑟( ·𝑠𝑀)𝐼) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = ((𝑞( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝐼) = 𝐼)))
5453ex 449 . . . . 5 ((𝐼𝑉𝑅 ∈ Ring) → ((𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅)) → (((𝑟( ·𝑠𝑀)𝐼) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = ((𝑞( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝐼) = 𝐼))))
5539, 54sylbid 230 . . . 4 ((𝐼𝑉𝑅 ∈ Ring) → ((𝑞 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑀))) → (((𝑟( ·𝑠𝑀)𝐼) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = ((𝑞( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝐼) = 𝐼))))
5655ralrimivv 3108 . . 3 ((𝐼𝑉𝑅 ∈ Ring) → ∀𝑞 ∈ (Base‘(Scalar‘𝑀))∀𝑟 ∈ (Base‘(Scalar‘𝑀))(((𝑟( ·𝑠𝑀)𝐼) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = ((𝑞( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝐼) = 𝐼)))
57 oveq2 6822 . . . . . . . . . . . 12 (𝑥 = 𝐼 → (𝑤(+g𝑀)𝑥) = (𝑤(+g𝑀)𝐼))
5857oveq2d 6830 . . . . . . . . . . 11 (𝑥 = 𝐼 → (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝑥)) = (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝐼)))
59 oveq2 6822 . . . . . . . . . . . 12 (𝑥 = 𝐼 → (𝑟( ·𝑠𝑀)𝑥) = (𝑟( ·𝑠𝑀)𝐼))
6059oveq2d 6830 . . . . . . . . . . 11 (𝑥 = 𝐼 → ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑥)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)))
6158, 60eqeq12d 2775 . . . . . . . . . 10 (𝑥 = 𝐼 → ((𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝑥)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑥)) ↔ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼))))
62613anbi2d 1553 . . . . . . . . 9 (𝑥 = 𝐼 → (((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝑥)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ↔ ((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤)))))
6362anbi1d 743 . . . . . . . 8 (𝑥 = 𝐼 → ((((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝑥)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤)) ↔ (((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤))))
6463ralbidv 3124 . . . . . . 7 (𝑥 = 𝐼 → (∀𝑤 ∈ {𝐼} (((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝑥)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤)) ↔ ∀𝑤 ∈ {𝐼} (((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤))))
6564ralsng 4362 . . . . . 6 (𝐼𝑉 → (∀𝑥 ∈ {𝐼}∀𝑤 ∈ {𝐼} (((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝑥)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤)) ↔ ∀𝑤 ∈ {𝐼} (((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤))))
6665adantr 472 . . . . 5 ((𝐼𝑉𝑅 ∈ Ring) → (∀𝑥 ∈ {𝐼}∀𝑤 ∈ {𝐼} (((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝑥)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤)) ↔ ∀𝑤 ∈ {𝐼} (((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤))))
67 oveq2 6822 . . . . . . . . . 10 (𝑤 = 𝐼 → (𝑟( ·𝑠𝑀)𝑤) = (𝑟( ·𝑠𝑀)𝐼))
6867eleq1d 2824 . . . . . . . . 9 (𝑤 = 𝐼 → ((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ↔ (𝑟( ·𝑠𝑀)𝐼) ∈ {𝐼}))
69 oveq1 6821 . . . . . . . . . . 11 (𝑤 = 𝐼 → (𝑤(+g𝑀)𝐼) = (𝐼(+g𝑀)𝐼))
7069oveq2d 6830 . . . . . . . . . 10 (𝑤 = 𝐼 → (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝐼)) = (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)))
7167oveq1d 6829 . . . . . . . . . 10 (𝑤 = 𝐼 → ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)))
7270, 71eqeq12d 2775 . . . . . . . . 9 (𝑤 = 𝐼 → ((𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ↔ (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼))))
73 oveq2 6822 . . . . . . . . . 10 (𝑤 = 𝐼 → ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼))
74 oveq2 6822 . . . . . . . . . . 11 (𝑤 = 𝐼 → (𝑞( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)𝐼))
7574, 67oveq12d 6832 . . . . . . . . . 10 (𝑤 = 𝐼 → ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤)) = ((𝑞( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)))
7673, 75eqeq12d 2775 . . . . . . . . 9 (𝑤 = 𝐼 → (((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤)) ↔ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = ((𝑞( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼))))
7768, 72, 763anbi123d 1548 . . . . . . . 8 (𝑤 = 𝐼 → (((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ↔ ((𝑟( ·𝑠𝑀)𝐼) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = ((𝑞( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)))))
78 oveq2 6822 . . . . . . . . . 10 (𝑤 = 𝐼 → ((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼))
7967oveq2d 6830 . . . . . . . . . 10 (𝑤 = 𝐼 → (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝐼)))
8078, 79eqeq12d 2775 . . . . . . . . 9 (𝑤 = 𝐼 → (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ↔ ((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝐼))))
81 oveq2 6822 . . . . . . . . . 10 (𝑤 = 𝐼 → ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝐼))
82 id 22 . . . . . . . . . 10 (𝑤 = 𝐼𝑤 = 𝐼)
8381, 82eqeq12d 2775 . . . . . . . . 9 (𝑤 = 𝐼 → (((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤 ↔ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝐼) = 𝐼))
8480, 83anbi12d 749 . . . . . . . 8 (𝑤 = 𝐼 → ((((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤) ↔ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝐼) = 𝐼)))
8577, 84anbi12d 749 . . . . . . 7 (𝑤 = 𝐼 → ((((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤)) ↔ (((𝑟( ·𝑠𝑀)𝐼) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = ((𝑞( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝐼) = 𝐼))))
8685ralsng 4362 . . . . . 6 (𝐼𝑉 → (∀𝑤 ∈ {𝐼} (((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤)) ↔ (((𝑟( ·𝑠𝑀)𝐼) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = ((𝑞( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝐼) = 𝐼))))
8786adantr 472 . . . . 5 ((𝐼𝑉𝑅 ∈ Ring) → (∀𝑤 ∈ {𝐼} (((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤)) ↔ (((𝑟( ·𝑠𝑀)𝐼) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = ((𝑞( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝐼) = 𝐼))))
8866, 87bitrd 268 . . . 4 ((𝐼𝑉𝑅 ∈ Ring) → (∀𝑥 ∈ {𝐼}∀𝑤 ∈ {𝐼} (((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝑥)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤)) ↔ (((𝑟( ·𝑠𝑀)𝐼) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = ((𝑞( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝐼) = 𝐼))))
89882ralbidv 3127 . . 3 ((𝐼𝑉𝑅 ∈ Ring) → (∀𝑞 ∈ (Base‘(Scalar‘𝑀))∀𝑟 ∈ (Base‘(Scalar‘𝑀))∀𝑥 ∈ {𝐼}∀𝑤 ∈ {𝐼} (((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝑥)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤)) ↔ ∀𝑞 ∈ (Base‘(Scalar‘𝑀))∀𝑟 ∈ (Base‘(Scalar‘𝑀))(((𝑟( ·𝑠𝑀)𝐼) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = ((𝑞( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝐼) = 𝐼))))
9056, 89mpbird 247 . 2 ((𝐼𝑉𝑅 ∈ Ring) → ∀𝑞 ∈ (Base‘(Scalar‘𝑀))∀𝑟 ∈ (Base‘(Scalar‘𝑀))∀𝑥 ∈ {𝐼}∀𝑤 ∈ {𝐼} (((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝑥)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤)))
914lmodbase 16240 . . . 4 ({𝐼} ∈ V → {𝐼} = (Base‘𝑀))
925, 91ax-mp 5 . . 3 {𝐼} = (Base‘𝑀)
93 eqid 2760 . . 3 (+g𝑀) = (+g𝑀)
94 eqid 2760 . . 3 ( ·𝑠𝑀) = ( ·𝑠𝑀)
95 eqid 2760 . . 3 (Scalar‘𝑀) = (Scalar‘𝑀)
96 eqid 2760 . . 3 (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀))
97 eqid 2760 . . 3 (+g‘(Scalar‘𝑀)) = (+g‘(Scalar‘𝑀))
98 eqid 2760 . . 3 (.r‘(Scalar‘𝑀)) = (.r‘(Scalar‘𝑀))
99 eqid 2760 . . 3 (1r‘(Scalar‘𝑀)) = (1r‘(Scalar‘𝑀))
10092, 93, 94, 95, 96, 97, 98, 99islmod 19089 . 2 (𝑀 ∈ LMod ↔ (𝑀 ∈ Grp ∧ (Scalar‘𝑀) ∈ Ring ∧ ∀𝑞 ∈ (Base‘(Scalar‘𝑀))∀𝑟 ∈ (Base‘(Scalar‘𝑀))∀𝑥 ∈ {𝐼}∀𝑤 ∈ {𝐼} (((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝑥)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤))))
10130, 35, 90, 100syl3anbrc 1429 1 ((𝐼𝑉𝑅 ∈ Ring) → 𝑀 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wral 3050  Vcvv 3340  cun 3713  {csn 4321  {cpr 4323  {ctp 4325  cop 4327  cfv 6049  (class class class)co 6814  cmpt2 6816  ndxcnx 16076  Basecbs 16079  +gcplusg 16163  .rcmulr 16164  Scalarcsca 16166   ·𝑠 cvsca 16167  Grpcgrp 17643  1rcur 18721  Ringcrg 18767  LModclmod 19085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-n0 11505  df-z 11590  df-uz 11900  df-fz 12540  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-plusg 16176  df-sca 16179  df-vsca 16180  df-0g 16324  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-grp 17646  df-mgp 18710  df-ur 18722  df-ring 18769  df-lmod 19087
This theorem is referenced by:  lmod1zr  42810
  Copyright terms: Public domain W3C validator