![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmod0vs | Structured version Visualization version GIF version |
Description: Zero times a vector is the zero vector. Equation 1a of [Kreyszig] p. 51. (ax-hvmul0 28176 analog.) (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lmod0vs.v | ⊢ 𝑉 = (Base‘𝑊) |
lmod0vs.f | ⊢ 𝐹 = (Scalar‘𝑊) |
lmod0vs.s | ⊢ · = ( ·𝑠 ‘𝑊) |
lmod0vs.o | ⊢ 𝑂 = (0g‘𝐹) |
lmod0vs.z | ⊢ 0 = (0g‘𝑊) |
Ref | Expression |
---|---|
lmod0vs | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑂 · 𝑋) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 474 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑊 ∈ LMod) | |
2 | lmod0vs.f | . . . . . . . 8 ⊢ 𝐹 = (Scalar‘𝑊) | |
3 | 2 | lmodring 19073 | . . . . . . 7 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
4 | 3 | adantr 472 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝐹 ∈ Ring) |
5 | eqid 2760 | . . . . . . 7 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
6 | lmod0vs.o | . . . . . . 7 ⊢ 𝑂 = (0g‘𝐹) | |
7 | 5, 6 | ring0cl 18769 | . . . . . 6 ⊢ (𝐹 ∈ Ring → 𝑂 ∈ (Base‘𝐹)) |
8 | 4, 7 | syl 17 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑂 ∈ (Base‘𝐹)) |
9 | simpr 479 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑉) | |
10 | lmod0vs.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
11 | eqid 2760 | . . . . . 6 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
12 | lmod0vs.s | . . . . . 6 ⊢ · = ( ·𝑠 ‘𝑊) | |
13 | eqid 2760 | . . . . . 6 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
14 | 10, 11, 2, 12, 5, 13 | lmodvsdir 19089 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ (𝑂 ∈ (Base‘𝐹) ∧ 𝑂 ∈ (Base‘𝐹) ∧ 𝑋 ∈ 𝑉)) → ((𝑂(+g‘𝐹)𝑂) · 𝑋) = ((𝑂 · 𝑋)(+g‘𝑊)(𝑂 · 𝑋))) |
15 | 1, 8, 8, 9, 14 | syl13anc 1479 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((𝑂(+g‘𝐹)𝑂) · 𝑋) = ((𝑂 · 𝑋)(+g‘𝑊)(𝑂 · 𝑋))) |
16 | ringgrp 18752 | . . . . . . 7 ⊢ (𝐹 ∈ Ring → 𝐹 ∈ Grp) | |
17 | 4, 16 | syl 17 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝐹 ∈ Grp) |
18 | 5, 13, 6 | grplid 17653 | . . . . . 6 ⊢ ((𝐹 ∈ Grp ∧ 𝑂 ∈ (Base‘𝐹)) → (𝑂(+g‘𝐹)𝑂) = 𝑂) |
19 | 17, 8, 18 | syl2anc 696 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑂(+g‘𝐹)𝑂) = 𝑂) |
20 | 19 | oveq1d 6828 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((𝑂(+g‘𝐹)𝑂) · 𝑋) = (𝑂 · 𝑋)) |
21 | 15, 20 | eqtr3d 2796 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((𝑂 · 𝑋)(+g‘𝑊)(𝑂 · 𝑋)) = (𝑂 · 𝑋)) |
22 | 10, 2, 12, 5 | lmodvscl 19082 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑂 ∈ (Base‘𝐹) ∧ 𝑋 ∈ 𝑉) → (𝑂 · 𝑋) ∈ 𝑉) |
23 | 1, 8, 9, 22 | syl3anc 1477 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑂 · 𝑋) ∈ 𝑉) |
24 | lmod0vs.z | . . . . 5 ⊢ 0 = (0g‘𝑊) | |
25 | 10, 11, 24 | lmod0vid 19097 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ (𝑂 · 𝑋) ∈ 𝑉) → (((𝑂 · 𝑋)(+g‘𝑊)(𝑂 · 𝑋)) = (𝑂 · 𝑋) ↔ 0 = (𝑂 · 𝑋))) |
26 | 23, 25 | syldan 488 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (((𝑂 · 𝑋)(+g‘𝑊)(𝑂 · 𝑋)) = (𝑂 · 𝑋) ↔ 0 = (𝑂 · 𝑋))) |
27 | 21, 26 | mpbid 222 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 0 = (𝑂 · 𝑋)) |
28 | 27 | eqcomd 2766 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑂 · 𝑋) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ‘cfv 6049 (class class class)co 6813 Basecbs 16059 +gcplusg 16143 Scalarcsca 16146 ·𝑠 cvsca 16147 0gc0g 16302 Grpcgrp 17623 Ringcrg 18747 LModclmod 19065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-iota 6012 df-fun 6051 df-fv 6057 df-riota 6774 df-ov 6816 df-0g 16304 df-mgm 17443 df-sgrp 17485 df-mnd 17496 df-grp 17626 df-ring 18749 df-lmod 19067 |
This theorem is referenced by: lmodvs0 19099 lmodvsmmulgdi 19100 lcomfsupp 19105 lmodvneg1 19108 mptscmfsupp0 19130 lvecvs0or 19310 lssvs0or 19312 lspsneleq 19317 lspdisj 19327 lspfixed 19330 lspexch 19331 lspsolvlem 19344 lspsolv 19345 mplcoe1 19667 mplbas2 19672 ply10s0 19828 ply1scl0 19862 gsummoncoe1 19876 uvcresum 20334 frlmsslsp 20337 frlmup1 20339 frlmup2 20340 pmatcollpwscmatlem1 20796 idpm2idmp 20808 mp2pm2mplem4 20816 pm2mpmhmlem1 20825 monmat2matmon 20831 cpmidpmatlem3 20879 clm0vs 23095 plypf1 24167 lmodslmd 30066 lshpkrlem1 34900 ldual0vs 34950 lclkrlem1 37297 lcd0vs 37406 baerlem3lem1 37498 baerlem5blem1 37500 hdmap14lem2a 37661 hdmap14lem4a 37665 hdmap14lem6 37667 hgmapval0 37686 lmod0rng 42378 scmsuppss 42663 lmodvsmdi 42673 ascl0 42675 ply1mulgsumlem4 42687 lincval1 42718 lincvalsc0 42720 linc0scn0 42722 linc1 42724 ldepsprlem 42771 |
Copyright terms: Public domain | W3C validator |