![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmod0vid | Structured version Visualization version GIF version |
Description: Identity equivalent to the value of the zero vector. Provides a convenient way to compute the value. (Contributed by NM, 9-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
0vlid.v | ⊢ 𝑉 = (Base‘𝑊) |
0vlid.a | ⊢ + = (+g‘𝑊) |
0vlid.z | ⊢ 0 = (0g‘𝑊) |
Ref | Expression |
---|---|
lmod0vid | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((𝑋 + 𝑋) = 𝑋 ↔ 0 = 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodgrp 19080 | . 2 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) | |
2 | 0vlid.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
3 | 0vlid.a | . . 3 ⊢ + = (+g‘𝑊) | |
4 | 0vlid.z | . . 3 ⊢ 0 = (0g‘𝑊) | |
5 | 2, 3, 4 | grpid 17665 | . 2 ⊢ ((𝑊 ∈ Grp ∧ 𝑋 ∈ 𝑉) → ((𝑋 + 𝑋) = 𝑋 ↔ 0 = 𝑋)) |
6 | 1, 5 | sylan 569 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((𝑋 + 𝑋) = 𝑋 ↔ 0 = 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ‘cfv 6031 (class class class)co 6793 Basecbs 16064 +gcplusg 16149 0gc0g 16308 Grpcgrp 17630 LModclmod 19073 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-iota 5994 df-fun 6033 df-fv 6039 df-riota 6754 df-ov 6796 df-0g 16310 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-grp 17633 df-lmod 19075 |
This theorem is referenced by: lmod0vs 19106 dva0g 36837 dvh0g 36921 |
Copyright terms: Public domain | W3C validator |