MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmod0vcl Structured version   Visualization version   GIF version

Theorem lmod0vcl 19102
Description: The zero vector is a vector. (ax-hv0cl 28200 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
0vcl.v 𝑉 = (Base‘𝑊)
0vcl.z 0 = (0g𝑊)
Assertion
Ref Expression
lmod0vcl (𝑊 ∈ LMod → 0𝑉)

Proof of Theorem lmod0vcl
StepHypRef Expression
1 lmodgrp 19080 . 2 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
2 0vcl.v . . 3 𝑉 = (Base‘𝑊)
3 0vcl.z . . 3 0 = (0g𝑊)
42, 3grpidcl 17658 . 2 (𝑊 ∈ Grp → 0𝑉)
51, 4syl 17 1 (𝑊 ∈ LMod → 0𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1631  wcel 2145  cfv 6030  Basecbs 16064  0gc0g 16308  Grpcgrp 17630  LModclmod 19073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-iota 5993  df-fun 6032  df-fv 6038  df-riota 6757  df-ov 6799  df-0g 16310  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-grp 17633  df-lmod 19075
This theorem is referenced by:  lmodvs0  19107  lmodfopne  19111  lsssn0  19158  lspun0  19224  lsppr0  19305  lspsneq  19335  lspprat  19368  ip0r  20199  ocvlss  20233  nmhmcn  23139  lfl0  34874  lflmul  34877  lkrlss  34904  dochexmid  37278  lcfl8  37312  lcd0vcl  37424  mapdh6bN  37547  mapdh6cN  37548  hdmap1val0  37609  hdmap1l6b  37621  hdmap1l6c  37622  hdmapval0  37643  hdmaprnlem17N  37673  hdmap14lem13  37690  hdmaplkr  37723  lcoel0  42742
  Copyright terms: Public domain W3C validator