MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmmo Structured version   Visualization version   GIF version

Theorem lmmo 21232
Description: A sequence in a Hausdorff space converges to at most one limit. Part of Lemma 1.4-2(a) of [Kreyszig] p. 26. (Contributed by NM, 31-Jan-2008.) (Proof shortened by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
lmmo.1 (𝜑𝐽 ∈ Haus)
lmmo.4 (𝜑𝐹(⇝𝑡𝐽)𝐴)
lmmo.5 (𝜑𝐹(⇝𝑡𝐽)𝐵)
Assertion
Ref Expression
lmmo (𝜑𝐴 = 𝐵)

Proof of Theorem lmmo
Dummy variables 𝑗 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 an4 882 . . . . . . . . 9 (((𝑥𝐽𝑦𝐽) ∧ (𝐴𝑥𝐵𝑦)) ↔ ((𝑥𝐽𝐴𝑥) ∧ (𝑦𝐽𝐵𝑦)))
2 nnuz 11761 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
3 simprr 811 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝐽𝐴𝑥)) → 𝐴𝑥)
4 1zzd 11446 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝐽𝐴𝑥)) → 1 ∈ ℤ)
5 lmmo.4 . . . . . . . . . . . . . 14 (𝜑𝐹(⇝𝑡𝐽)𝐴)
65adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝐽𝐴𝑥)) → 𝐹(⇝𝑡𝐽)𝐴)
7 simprl 809 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝐽𝐴𝑥)) → 𝑥𝐽)
82, 3, 4, 6, 7lmcvg 21114 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝐽𝐴𝑥)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑥)
98ex 449 . . . . . . . . . . 11 (𝜑 → ((𝑥𝐽𝐴𝑥) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑥))
10 simprr 811 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝐽𝐵𝑦)) → 𝐵𝑦)
11 1zzd 11446 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝐽𝐵𝑦)) → 1 ∈ ℤ)
12 lmmo.5 . . . . . . . . . . . . . 14 (𝜑𝐹(⇝𝑡𝐽)𝐵)
1312adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝐽𝐵𝑦)) → 𝐹(⇝𝑡𝐽)𝐵)
14 simprl 809 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝐽𝐵𝑦)) → 𝑦𝐽)
152, 10, 11, 13, 14lmcvg 21114 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝐽𝐵𝑦)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑦)
1615ex 449 . . . . . . . . . . 11 (𝜑 → ((𝑦𝐽𝐵𝑦) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑦))
179, 16anim12d 585 . . . . . . . . . 10 (𝜑 → (((𝑥𝐽𝐴𝑥) ∧ (𝑦𝐽𝐵𝑦)) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑥 ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑦)))
182rexanuz2 14133 . . . . . . . . . . 11 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ 𝑥 ∧ (𝐹𝑘) ∈ 𝑦) ↔ (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑥 ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑦))
19 nnz 11437 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
20 uzid 11740 . . . . . . . . . . . . . 14 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
21 ne0i 3954 . . . . . . . . . . . . . 14 (𝑗 ∈ (ℤ𝑗) → (ℤ𝑗) ≠ ∅)
2219, 20, 213syl 18 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → (ℤ𝑗) ≠ ∅)
23 r19.2z 4093 . . . . . . . . . . . . . 14 (((ℤ𝑗) ≠ ∅ ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ 𝑥 ∧ (𝐹𝑘) ∈ 𝑦)) → ∃𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ 𝑥 ∧ (𝐹𝑘) ∈ 𝑦))
24 elin 3829 . . . . . . . . . . . . . . . 16 ((𝐹𝑘) ∈ (𝑥𝑦) ↔ ((𝐹𝑘) ∈ 𝑥 ∧ (𝐹𝑘) ∈ 𝑦))
25 n0i 3953 . . . . . . . . . . . . . . . 16 ((𝐹𝑘) ∈ (𝑥𝑦) → ¬ (𝑥𝑦) = ∅)
2624, 25sylbir 225 . . . . . . . . . . . . . . 15 (((𝐹𝑘) ∈ 𝑥 ∧ (𝐹𝑘) ∈ 𝑦) → ¬ (𝑥𝑦) = ∅)
2726rexlimivw 3058 . . . . . . . . . . . . . 14 (∃𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ 𝑥 ∧ (𝐹𝑘) ∈ 𝑦) → ¬ (𝑥𝑦) = ∅)
2823, 27syl 17 . . . . . . . . . . . . 13 (((ℤ𝑗) ≠ ∅ ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ 𝑥 ∧ (𝐹𝑘) ∈ 𝑦)) → ¬ (𝑥𝑦) = ∅)
2922, 28sylan 487 . . . . . . . . . . . 12 ((𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ 𝑥 ∧ (𝐹𝑘) ∈ 𝑦)) → ¬ (𝑥𝑦) = ∅)
3029rexlimiva 3057 . . . . . . . . . . 11 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ 𝑥 ∧ (𝐹𝑘) ∈ 𝑦) → ¬ (𝑥𝑦) = ∅)
3118, 30sylbir 225 . . . . . . . . . 10 ((∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑥 ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑦) → ¬ (𝑥𝑦) = ∅)
3217, 31syl6 35 . . . . . . . . 9 (𝜑 → (((𝑥𝐽𝐴𝑥) ∧ (𝑦𝐽𝐵𝑦)) → ¬ (𝑥𝑦) = ∅))
331, 32syl5bi 232 . . . . . . . 8 (𝜑 → (((𝑥𝐽𝑦𝐽) ∧ (𝐴𝑥𝐵𝑦)) → ¬ (𝑥𝑦) = ∅))
3433expdimp 452 . . . . . . 7 ((𝜑 ∧ (𝑥𝐽𝑦𝐽)) → ((𝐴𝑥𝐵𝑦) → ¬ (𝑥𝑦) = ∅))
35 imnan 437 . . . . . . 7 (((𝐴𝑥𝐵𝑦) → ¬ (𝑥𝑦) = ∅) ↔ ¬ ((𝐴𝑥𝐵𝑦) ∧ (𝑥𝑦) = ∅))
3634, 35sylib 208 . . . . . 6 ((𝜑 ∧ (𝑥𝐽𝑦𝐽)) → ¬ ((𝐴𝑥𝐵𝑦) ∧ (𝑥𝑦) = ∅))
37 df-3an 1056 . . . . . 6 ((𝐴𝑥𝐵𝑦 ∧ (𝑥𝑦) = ∅) ↔ ((𝐴𝑥𝐵𝑦) ∧ (𝑥𝑦) = ∅))
3836, 37sylnibr 318 . . . . 5 ((𝜑 ∧ (𝑥𝐽𝑦𝐽)) → ¬ (𝐴𝑥𝐵𝑦 ∧ (𝑥𝑦) = ∅))
3938anassrs 681 . . . 4 (((𝜑𝑥𝐽) ∧ 𝑦𝐽) → ¬ (𝐴𝑥𝐵𝑦 ∧ (𝑥𝑦) = ∅))
4039nrexdv 3030 . . 3 ((𝜑𝑥𝐽) → ¬ ∃𝑦𝐽 (𝐴𝑥𝐵𝑦 ∧ (𝑥𝑦) = ∅))
4140nrexdv 3030 . 2 (𝜑 → ¬ ∃𝑥𝐽𝑦𝐽 (𝐴𝑥𝐵𝑦 ∧ (𝑥𝑦) = ∅))
42 lmmo.1 . . . 4 (𝜑𝐽 ∈ Haus)
43 haustop 21183 . . . . . . 7 (𝐽 ∈ Haus → 𝐽 ∈ Top)
4442, 43syl 17 . . . . . 6 (𝜑𝐽 ∈ Top)
45 eqid 2651 . . . . . . 7 𝐽 = 𝐽
4645toptopon 20770 . . . . . 6 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
4744, 46sylib 208 . . . . 5 (𝜑𝐽 ∈ (TopOn‘ 𝐽))
48 lmcl 21149 . . . . 5 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐹(⇝𝑡𝐽)𝐴) → 𝐴 𝐽)
4947, 5, 48syl2anc 694 . . . 4 (𝜑𝐴 𝐽)
50 lmcl 21149 . . . . 5 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐹(⇝𝑡𝐽)𝐵) → 𝐵 𝐽)
5147, 12, 50syl2anc 694 . . . 4 (𝜑𝐵 𝐽)
5245hausnei 21180 . . . . 5 ((𝐽 ∈ Haus ∧ (𝐴 𝐽𝐵 𝐽𝐴𝐵)) → ∃𝑥𝐽𝑦𝐽 (𝐴𝑥𝐵𝑦 ∧ (𝑥𝑦) = ∅))
53523exp2 1307 . . . 4 (𝐽 ∈ Haus → (𝐴 𝐽 → (𝐵 𝐽 → (𝐴𝐵 → ∃𝑥𝐽𝑦𝐽 (𝐴𝑥𝐵𝑦 ∧ (𝑥𝑦) = ∅)))))
5442, 49, 51, 53syl3c 66 . . 3 (𝜑 → (𝐴𝐵 → ∃𝑥𝐽𝑦𝐽 (𝐴𝑥𝐵𝑦 ∧ (𝑥𝑦) = ∅)))
5554necon1bd 2841 . 2 (𝜑 → (¬ ∃𝑥𝐽𝑦𝐽 (𝐴𝑥𝐵𝑦 ∧ (𝑥𝑦) = ∅) → 𝐴 = 𝐵))
5641, 55mpd 15 1 (𝜑𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wral 2941  wrex 2942  cin 3606  c0 3948   cuni 4468   class class class wbr 4685  cfv 5926  1c1 9975  cn 11058  cz 11415  cuz 11725  Topctop 20746  TopOnctopon 20763  𝑡clm 21078  Hauscha 21160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-z 11416  df-uz 11726  df-top 20747  df-topon 20764  df-lm 21081  df-haus 21167
This theorem is referenced by:  lmfun  21233  occllem  28290  nlelchi  29048  hmopidmchi  29138
  Copyright terms: Public domain W3C validator