![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmle | Structured version Visualization version GIF version |
Description: If the distance from each member of a converging sequence to a given point is less than or equal to a given amount, so is the convergence value. (Contributed by NM, 23-Dec-2007.) (Proof shortened by Mario Carneiro, 1-May-2014.) |
Ref | Expression |
---|---|
lmle.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
lmle.3 | ⊢ 𝐽 = (MetOpen‘𝐷) |
lmle.4 | ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
lmle.6 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
lmle.7 | ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) |
lmle.8 | ⊢ (𝜑 → 𝑄 ∈ 𝑋) |
lmle.9 | ⊢ (𝜑 → 𝑅 ∈ ℝ*) |
lmle.10 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑄𝐷(𝐹‘𝑘)) ≤ 𝑅) |
Ref | Expression |
---|---|
lmle | ⊢ (𝜑 → (𝑄𝐷𝑃) ≤ 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmle.1 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | lmle.4 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) | |
3 | lmle.3 | . . . . . 6 ⊢ 𝐽 = (MetOpen‘𝐷) | |
4 | 3 | mopntopon 22465 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
5 | 2, 4 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
6 | lmle.6 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
7 | lmrel 21256 | . . . . 5 ⊢ Rel (⇝𝑡‘𝐽) | |
8 | lmle.7 | . . . . 5 ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) | |
9 | releldm 5513 | . . . . 5 ⊢ ((Rel (⇝𝑡‘𝐽) ∧ 𝐹(⇝𝑡‘𝐽)𝑃) → 𝐹 ∈ dom (⇝𝑡‘𝐽)) | |
10 | 7, 8, 9 | sylancr 698 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ dom (⇝𝑡‘𝐽)) |
11 | 1, 5, 6, 10 | lmff 21327 | . . 3 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋) |
12 | eqid 2760 | . . . 4 ⊢ (ℤ≥‘𝑗) = (ℤ≥‘𝑗) | |
13 | 5 | adantr 472 | . . . 4 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) → 𝐽 ∈ (TopOn‘𝑋)) |
14 | simprl 811 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) → 𝑗 ∈ 𝑍) | |
15 | 14, 1 | syl6eleq 2849 | . . . . 5 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) → 𝑗 ∈ (ℤ≥‘𝑀)) |
16 | eluzelz 11909 | . . . . 5 ⊢ (𝑗 ∈ (ℤ≥‘𝑀) → 𝑗 ∈ ℤ) | |
17 | 15, 16 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) → 𝑗 ∈ ℤ) |
18 | 8 | adantr 472 | . . . 4 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) → 𝐹(⇝𝑡‘𝐽)𝑃) |
19 | fvres 6369 | . . . . . . 7 ⊢ (𝑘 ∈ (ℤ≥‘𝑗) → ((𝐹 ↾ (ℤ≥‘𝑗))‘𝑘) = (𝐹‘𝑘)) | |
20 | 19 | adantl 473 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝐹 ↾ (ℤ≥‘𝑗))‘𝑘) = (𝐹‘𝑘)) |
21 | simprr 813 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) → (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋) | |
22 | 21 | ffvelrnda 6523 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝐹 ↾ (ℤ≥‘𝑗))‘𝑘) ∈ 𝑋) |
23 | 20, 22 | eqeltrrd 2840 | . . . . 5 ⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐹‘𝑘) ∈ 𝑋) |
24 | 1 | uztrn2 11917 | . . . . . . 7 ⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ 𝑍) |
25 | 14, 24 | sylan 489 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ 𝑍) |
26 | lmle.10 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑄𝐷(𝐹‘𝑘)) ≤ 𝑅) | |
27 | 26 | adantlr 753 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) ∧ 𝑘 ∈ 𝑍) → (𝑄𝐷(𝐹‘𝑘)) ≤ 𝑅) |
28 | 25, 27 | syldan 488 | . . . . 5 ⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝑄𝐷(𝐹‘𝑘)) ≤ 𝑅) |
29 | oveq2 6822 | . . . . . . 7 ⊢ (𝑥 = (𝐹‘𝑘) → (𝑄𝐷𝑥) = (𝑄𝐷(𝐹‘𝑘))) | |
30 | 29 | breq1d 4814 | . . . . . 6 ⊢ (𝑥 = (𝐹‘𝑘) → ((𝑄𝐷𝑥) ≤ 𝑅 ↔ (𝑄𝐷(𝐹‘𝑘)) ≤ 𝑅)) |
31 | 30 | elrab 3504 | . . . . 5 ⊢ ((𝐹‘𝑘) ∈ {𝑥 ∈ 𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} ↔ ((𝐹‘𝑘) ∈ 𝑋 ∧ (𝑄𝐷(𝐹‘𝑘)) ≤ 𝑅)) |
32 | 23, 28, 31 | sylanbrc 701 | . . . 4 ⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐹‘𝑘) ∈ {𝑥 ∈ 𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅}) |
33 | lmle.8 | . . . . . 6 ⊢ (𝜑 → 𝑄 ∈ 𝑋) | |
34 | lmle.9 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ ℝ*) | |
35 | eqid 2760 | . . . . . . 7 ⊢ {𝑥 ∈ 𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} = {𝑥 ∈ 𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} | |
36 | 3, 35 | blcld 22531 | . . . . . 6 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑄 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → {𝑥 ∈ 𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} ∈ (Clsd‘𝐽)) |
37 | 2, 33, 34, 36 | syl3anc 1477 | . . . . 5 ⊢ (𝜑 → {𝑥 ∈ 𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} ∈ (Clsd‘𝐽)) |
38 | 37 | adantr 472 | . . . 4 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) → {𝑥 ∈ 𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} ∈ (Clsd‘𝐽)) |
39 | 12, 13, 17, 18, 32, 38 | lmcld 21329 | . . 3 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) → 𝑃 ∈ {𝑥 ∈ 𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅}) |
40 | 11, 39 | rexlimddv 3173 | . 2 ⊢ (𝜑 → 𝑃 ∈ {𝑥 ∈ 𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅}) |
41 | oveq2 6822 | . . . . 5 ⊢ (𝑥 = 𝑃 → (𝑄𝐷𝑥) = (𝑄𝐷𝑃)) | |
42 | 41 | breq1d 4814 | . . . 4 ⊢ (𝑥 = 𝑃 → ((𝑄𝐷𝑥) ≤ 𝑅 ↔ (𝑄𝐷𝑃) ≤ 𝑅)) |
43 | 42 | elrab 3504 | . . 3 ⊢ (𝑃 ∈ {𝑥 ∈ 𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} ↔ (𝑃 ∈ 𝑋 ∧ (𝑄𝐷𝑃) ≤ 𝑅)) |
44 | 43 | simprbi 483 | . 2 ⊢ (𝑃 ∈ {𝑥 ∈ 𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} → (𝑄𝐷𝑃) ≤ 𝑅) |
45 | 40, 44 | syl 17 | 1 ⊢ (𝜑 → (𝑄𝐷𝑃) ≤ 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 {crab 3054 class class class wbr 4804 dom cdm 5266 ↾ cres 5268 Rel wrel 5271 ⟶wf 6045 ‘cfv 6049 (class class class)co 6814 ℝ*cxr 10285 ≤ cle 10287 ℤcz 11589 ℤ≥cuz 11899 ∞Metcxmt 19953 MetOpencmopn 19958 TopOnctopon 20937 Clsdccld 21042 ⇝𝑡clm 21252 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 ax-pre-sup 10226 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-iin 4675 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-er 7913 df-map 8027 df-pm 8028 df-en 8124 df-dom 8125 df-sdom 8126 df-sup 8515 df-inf 8516 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-div 10897 df-nn 11233 df-2 11291 df-n0 11505 df-z 11590 df-uz 11900 df-q 12002 df-rp 12046 df-xneg 12159 df-xadd 12160 df-xmul 12161 df-topgen 16326 df-psmet 19960 df-xmet 19961 df-bl 19963 df-mopn 19964 df-top 20921 df-topon 20938 df-bases 20972 df-cld 21045 df-ntr 21046 df-cls 21047 df-lm 21255 |
This theorem is referenced by: nglmle 23320 minvecolem4 28066 |
Copyright terms: Public domain | W3C validator |