MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmle Structured version   Visualization version   GIF version

Theorem lmle 23319
Description: If the distance from each member of a converging sequence to a given point is less than or equal to a given amount, so is the convergence value. (Contributed by NM, 23-Dec-2007.) (Proof shortened by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
lmle.1 𝑍 = (ℤ𝑀)
lmle.3 𝐽 = (MetOpen‘𝐷)
lmle.4 (𝜑𝐷 ∈ (∞Met‘𝑋))
lmle.6 (𝜑𝑀 ∈ ℤ)
lmle.7 (𝜑𝐹(⇝𝑡𝐽)𝑃)
lmle.8 (𝜑𝑄𝑋)
lmle.9 (𝜑𝑅 ∈ ℝ*)
lmle.10 ((𝜑𝑘𝑍) → (𝑄𝐷(𝐹𝑘)) ≤ 𝑅)
Assertion
Ref Expression
lmle (𝜑 → (𝑄𝐷𝑃) ≤ 𝑅)
Distinct variable groups:   𝐷,𝑘   𝑘,𝐽   𝜑,𝑘   𝑘,𝑍   𝑘,𝐹   𝑃,𝑘   𝑄,𝑘   𝑅,𝑘   𝑘,𝑋
Allowed substitution hint:   𝑀(𝑘)

Proof of Theorem lmle
Dummy variables 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmle.1 . . . 4 𝑍 = (ℤ𝑀)
2 lmle.4 . . . . 5 (𝜑𝐷 ∈ (∞Met‘𝑋))
3 lmle.3 . . . . . 6 𝐽 = (MetOpen‘𝐷)
43mopntopon 22465 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
52, 4syl 17 . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
6 lmle.6 . . . 4 (𝜑𝑀 ∈ ℤ)
7 lmrel 21256 . . . . 5 Rel (⇝𝑡𝐽)
8 lmle.7 . . . . 5 (𝜑𝐹(⇝𝑡𝐽)𝑃)
9 releldm 5513 . . . . 5 ((Rel (⇝𝑡𝐽) ∧ 𝐹(⇝𝑡𝐽)𝑃) → 𝐹 ∈ dom (⇝𝑡𝐽))
107, 8, 9sylancr 698 . . . 4 (𝜑𝐹 ∈ dom (⇝𝑡𝐽))
111, 5, 6, 10lmff 21327 . . 3 (𝜑 → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)
12 eqid 2760 . . . 4 (ℤ𝑗) = (ℤ𝑗)
135adantr 472 . . . 4 ((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) → 𝐽 ∈ (TopOn‘𝑋))
14 simprl 811 . . . . . 6 ((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) → 𝑗𝑍)
1514, 1syl6eleq 2849 . . . . 5 ((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) → 𝑗 ∈ (ℤ𝑀))
16 eluzelz 11909 . . . . 5 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
1715, 16syl 17 . . . 4 ((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) → 𝑗 ∈ ℤ)
188adantr 472 . . . 4 ((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) → 𝐹(⇝𝑡𝐽)𝑃)
19 fvres 6369 . . . . . . 7 (𝑘 ∈ (ℤ𝑗) → ((𝐹 ↾ (ℤ𝑗))‘𝑘) = (𝐹𝑘))
2019adantl 473 . . . . . 6 (((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹 ↾ (ℤ𝑗))‘𝑘) = (𝐹𝑘))
21 simprr 813 . . . . . . 7 ((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) → (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)
2221ffvelrnda 6523 . . . . . 6 (((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹 ↾ (ℤ𝑗))‘𝑘) ∈ 𝑋)
2320, 22eqeltrrd 2840 . . . . 5 (((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ 𝑋)
241uztrn2 11917 . . . . . . 7 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
2514, 24sylan 489 . . . . . 6 (((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
26 lmle.10 . . . . . . 7 ((𝜑𝑘𝑍) → (𝑄𝐷(𝐹𝑘)) ≤ 𝑅)
2726adantlr 753 . . . . . 6 (((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) ∧ 𝑘𝑍) → (𝑄𝐷(𝐹𝑘)) ≤ 𝑅)
2825, 27syldan 488 . . . . 5 (((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑄𝐷(𝐹𝑘)) ≤ 𝑅)
29 oveq2 6822 . . . . . . 7 (𝑥 = (𝐹𝑘) → (𝑄𝐷𝑥) = (𝑄𝐷(𝐹𝑘)))
3029breq1d 4814 . . . . . 6 (𝑥 = (𝐹𝑘) → ((𝑄𝐷𝑥) ≤ 𝑅 ↔ (𝑄𝐷(𝐹𝑘)) ≤ 𝑅))
3130elrab 3504 . . . . 5 ((𝐹𝑘) ∈ {𝑥𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} ↔ ((𝐹𝑘) ∈ 𝑋 ∧ (𝑄𝐷(𝐹𝑘)) ≤ 𝑅))
3223, 28, 31sylanbrc 701 . . . 4 (((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ {𝑥𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅})
33 lmle.8 . . . . . 6 (𝜑𝑄𝑋)
34 lmle.9 . . . . . 6 (𝜑𝑅 ∈ ℝ*)
35 eqid 2760 . . . . . . 7 {𝑥𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} = {𝑥𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅}
363, 35blcld 22531 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑄𝑋𝑅 ∈ ℝ*) → {𝑥𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} ∈ (Clsd‘𝐽))
372, 33, 34, 36syl3anc 1477 . . . . 5 (𝜑 → {𝑥𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} ∈ (Clsd‘𝐽))
3837adantr 472 . . . 4 ((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) → {𝑥𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} ∈ (Clsd‘𝐽))
3912, 13, 17, 18, 32, 38lmcld 21329 . . 3 ((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) → 𝑃 ∈ {𝑥𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅})
4011, 39rexlimddv 3173 . 2 (𝜑𝑃 ∈ {𝑥𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅})
41 oveq2 6822 . . . . 5 (𝑥 = 𝑃 → (𝑄𝐷𝑥) = (𝑄𝐷𝑃))
4241breq1d 4814 . . . 4 (𝑥 = 𝑃 → ((𝑄𝐷𝑥) ≤ 𝑅 ↔ (𝑄𝐷𝑃) ≤ 𝑅))
4342elrab 3504 . . 3 (𝑃 ∈ {𝑥𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} ↔ (𝑃𝑋 ∧ (𝑄𝐷𝑃) ≤ 𝑅))
4443simprbi 483 . 2 (𝑃 ∈ {𝑥𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} → (𝑄𝐷𝑃) ≤ 𝑅)
4540, 44syl 17 1 (𝜑 → (𝑄𝐷𝑃) ≤ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  {crab 3054   class class class wbr 4804  dom cdm 5266  cres 5268  Rel wrel 5271  wf 6045  cfv 6049  (class class class)co 6814  *cxr 10285  cle 10287  cz 11589  cuz 11899  ∞Metcxmt 19953  MetOpencmopn 19958  TopOnctopon 20937  Clsdccld 21042  𝑡clm 21252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-er 7913  df-map 8027  df-pm 8028  df-en 8124  df-dom 8125  df-sdom 8126  df-sup 8515  df-inf 8516  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-n0 11505  df-z 11590  df-uz 11900  df-q 12002  df-rp 12046  df-xneg 12159  df-xadd 12160  df-xmul 12161  df-topgen 16326  df-psmet 19960  df-xmet 19961  df-bl 19963  df-mopn 19964  df-top 20921  df-topon 20938  df-bases 20972  df-cld 21045  df-ntr 21046  df-cls 21047  df-lm 21255
This theorem is referenced by:  nglmle  23320  minvecolem4  28066
  Copyright terms: Public domain W3C validator