![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmimlbs | Structured version Visualization version GIF version |
Description: The isomorphic image of a basis is a basis. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
Ref | Expression |
---|---|
lmimlbs.j | ⊢ 𝐽 = (LBasis‘𝑆) |
lmimlbs.k | ⊢ 𝐾 = (LBasis‘𝑇) |
Ref | Expression |
---|---|
lmimlbs | ⊢ ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵 ∈ 𝐽) → (𝐹 “ 𝐵) ∈ 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmimlmhm 19112 | . . . 4 ⊢ (𝐹 ∈ (𝑆 LMIso 𝑇) → 𝐹 ∈ (𝑆 LMHom 𝑇)) | |
2 | 1 | adantr 480 | . . 3 ⊢ ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵 ∈ 𝐽) → 𝐹 ∈ (𝑆 LMHom 𝑇)) |
3 | eqid 2651 | . . . . . 6 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
4 | eqid 2651 | . . . . . 6 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
5 | 3, 4 | lmimf1o 19111 | . . . . 5 ⊢ (𝐹 ∈ (𝑆 LMIso 𝑇) → 𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇)) |
6 | f1of1 6174 | . . . . 5 ⊢ (𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇) → 𝐹:(Base‘𝑆)–1-1→(Base‘𝑇)) | |
7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝐹 ∈ (𝑆 LMIso 𝑇) → 𝐹:(Base‘𝑆)–1-1→(Base‘𝑇)) |
8 | 7 | adantr 480 | . . 3 ⊢ ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵 ∈ 𝐽) → 𝐹:(Base‘𝑆)–1-1→(Base‘𝑇)) |
9 | lmimlbs.j | . . . . . 6 ⊢ 𝐽 = (LBasis‘𝑆) | |
10 | 9 | lbslinds 20220 | . . . . 5 ⊢ 𝐽 ⊆ (LIndS‘𝑆) |
11 | 10 | sseli 3632 | . . . 4 ⊢ (𝐵 ∈ 𝐽 → 𝐵 ∈ (LIndS‘𝑆)) |
12 | 11 | adantl 481 | . . 3 ⊢ ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵 ∈ 𝐽) → 𝐵 ∈ (LIndS‘𝑆)) |
13 | 3, 4 | lindsmm2 20216 | . . 3 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:(Base‘𝑆)–1-1→(Base‘𝑇) ∧ 𝐵 ∈ (LIndS‘𝑆)) → (𝐹 “ 𝐵) ∈ (LIndS‘𝑇)) |
14 | 2, 8, 12, 13 | syl3anc 1366 | . 2 ⊢ ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵 ∈ 𝐽) → (𝐹 “ 𝐵) ∈ (LIndS‘𝑇)) |
15 | eqid 2651 | . . . . . 6 ⊢ (LSpan‘𝑆) = (LSpan‘𝑆) | |
16 | 3, 9, 15 | lbssp 19127 | . . . . 5 ⊢ (𝐵 ∈ 𝐽 → ((LSpan‘𝑆)‘𝐵) = (Base‘𝑆)) |
17 | 16 | adantl 481 | . . . 4 ⊢ ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵 ∈ 𝐽) → ((LSpan‘𝑆)‘𝐵) = (Base‘𝑆)) |
18 | 17 | imaeq2d 5501 | . . 3 ⊢ ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵 ∈ 𝐽) → (𝐹 “ ((LSpan‘𝑆)‘𝐵)) = (𝐹 “ (Base‘𝑆))) |
19 | 3, 9 | lbsss 19125 | . . . 4 ⊢ (𝐵 ∈ 𝐽 → 𝐵 ⊆ (Base‘𝑆)) |
20 | eqid 2651 | . . . . 5 ⊢ (LSpan‘𝑇) = (LSpan‘𝑇) | |
21 | 3, 15, 20 | lmhmlsp 19097 | . . . 4 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐵 ⊆ (Base‘𝑆)) → (𝐹 “ ((LSpan‘𝑆)‘𝐵)) = ((LSpan‘𝑇)‘(𝐹 “ 𝐵))) |
22 | 1, 19, 21 | syl2an 493 | . . 3 ⊢ ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵 ∈ 𝐽) → (𝐹 “ ((LSpan‘𝑆)‘𝐵)) = ((LSpan‘𝑇)‘(𝐹 “ 𝐵))) |
23 | 5 | adantr 480 | . . . 4 ⊢ ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵 ∈ 𝐽) → 𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇)) |
24 | f1ofo 6182 | . . . 4 ⊢ (𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇) → 𝐹:(Base‘𝑆)–onto→(Base‘𝑇)) | |
25 | foima 6158 | . . . 4 ⊢ (𝐹:(Base‘𝑆)–onto→(Base‘𝑇) → (𝐹 “ (Base‘𝑆)) = (Base‘𝑇)) | |
26 | 23, 24, 25 | 3syl 18 | . . 3 ⊢ ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵 ∈ 𝐽) → (𝐹 “ (Base‘𝑆)) = (Base‘𝑇)) |
27 | 18, 22, 26 | 3eqtr3d 2693 | . 2 ⊢ ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵 ∈ 𝐽) → ((LSpan‘𝑇)‘(𝐹 “ 𝐵)) = (Base‘𝑇)) |
28 | lmimlbs.k | . . 3 ⊢ 𝐾 = (LBasis‘𝑇) | |
29 | 4, 28, 20 | islbs4 20219 | . 2 ⊢ ((𝐹 “ 𝐵) ∈ 𝐾 ↔ ((𝐹 “ 𝐵) ∈ (LIndS‘𝑇) ∧ ((LSpan‘𝑇)‘(𝐹 “ 𝐵)) = (Base‘𝑇))) |
30 | 14, 27, 29 | sylanbrc 699 | 1 ⊢ ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵 ∈ 𝐽) → (𝐹 “ 𝐵) ∈ 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ⊆ wss 3607 “ cima 5146 –1-1→wf1 5923 –onto→wfo 5924 –1-1-onto→wf1o 5925 ‘cfv 5926 (class class class)co 6690 Basecbs 15904 LSpanclspn 19019 LMHom clmhm 19067 LMIso clmim 19068 LBasisclbs 19122 LIndSclinds 20192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-ress 15912 df-plusg 16001 df-0g 16149 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-grp 17472 df-minusg 17473 df-sbg 17474 df-subg 17638 df-ghm 17705 df-mgp 18536 df-ur 18548 df-ring 18595 df-lmod 18913 df-lss 18981 df-lsp 19020 df-lmhm 19070 df-lmim 19071 df-lbs 19123 df-lindf 20193 df-linds 20194 |
This theorem is referenced by: lmiclbs 20224 |
Copyright terms: Public domain | W3C validator |