MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmimlbs Structured version   Visualization version   GIF version

Theorem lmimlbs 20223
Description: The isomorphic image of a basis is a basis. (Contributed by Stefan O'Rear, 26-Feb-2015.)
Hypotheses
Ref Expression
lmimlbs.j 𝐽 = (LBasis‘𝑆)
lmimlbs.k 𝐾 = (LBasis‘𝑇)
Assertion
Ref Expression
lmimlbs ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵𝐽) → (𝐹𝐵) ∈ 𝐾)

Proof of Theorem lmimlbs
StepHypRef Expression
1 lmimlmhm 19112 . . . 4 (𝐹 ∈ (𝑆 LMIso 𝑇) → 𝐹 ∈ (𝑆 LMHom 𝑇))
21adantr 480 . . 3 ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵𝐽) → 𝐹 ∈ (𝑆 LMHom 𝑇))
3 eqid 2651 . . . . . 6 (Base‘𝑆) = (Base‘𝑆)
4 eqid 2651 . . . . . 6 (Base‘𝑇) = (Base‘𝑇)
53, 4lmimf1o 19111 . . . . 5 (𝐹 ∈ (𝑆 LMIso 𝑇) → 𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇))
6 f1of1 6174 . . . . 5 (𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇) → 𝐹:(Base‘𝑆)–1-1→(Base‘𝑇))
75, 6syl 17 . . . 4 (𝐹 ∈ (𝑆 LMIso 𝑇) → 𝐹:(Base‘𝑆)–1-1→(Base‘𝑇))
87adantr 480 . . 3 ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵𝐽) → 𝐹:(Base‘𝑆)–1-1→(Base‘𝑇))
9 lmimlbs.j . . . . . 6 𝐽 = (LBasis‘𝑆)
109lbslinds 20220 . . . . 5 𝐽 ⊆ (LIndS‘𝑆)
1110sseli 3632 . . . 4 (𝐵𝐽𝐵 ∈ (LIndS‘𝑆))
1211adantl 481 . . 3 ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵𝐽) → 𝐵 ∈ (LIndS‘𝑆))
133, 4lindsmm2 20216 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:(Base‘𝑆)–1-1→(Base‘𝑇) ∧ 𝐵 ∈ (LIndS‘𝑆)) → (𝐹𝐵) ∈ (LIndS‘𝑇))
142, 8, 12, 13syl3anc 1366 . 2 ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵𝐽) → (𝐹𝐵) ∈ (LIndS‘𝑇))
15 eqid 2651 . . . . . 6 (LSpan‘𝑆) = (LSpan‘𝑆)
163, 9, 15lbssp 19127 . . . . 5 (𝐵𝐽 → ((LSpan‘𝑆)‘𝐵) = (Base‘𝑆))
1716adantl 481 . . . 4 ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵𝐽) → ((LSpan‘𝑆)‘𝐵) = (Base‘𝑆))
1817imaeq2d 5501 . . 3 ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵𝐽) → (𝐹 “ ((LSpan‘𝑆)‘𝐵)) = (𝐹 “ (Base‘𝑆)))
193, 9lbsss 19125 . . . 4 (𝐵𝐽𝐵 ⊆ (Base‘𝑆))
20 eqid 2651 . . . . 5 (LSpan‘𝑇) = (LSpan‘𝑇)
213, 15, 20lmhmlsp 19097 . . . 4 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐵 ⊆ (Base‘𝑆)) → (𝐹 “ ((LSpan‘𝑆)‘𝐵)) = ((LSpan‘𝑇)‘(𝐹𝐵)))
221, 19, 21syl2an 493 . . 3 ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵𝐽) → (𝐹 “ ((LSpan‘𝑆)‘𝐵)) = ((LSpan‘𝑇)‘(𝐹𝐵)))
235adantr 480 . . . 4 ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵𝐽) → 𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇))
24 f1ofo 6182 . . . 4 (𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇) → 𝐹:(Base‘𝑆)–onto→(Base‘𝑇))
25 foima 6158 . . . 4 (𝐹:(Base‘𝑆)–onto→(Base‘𝑇) → (𝐹 “ (Base‘𝑆)) = (Base‘𝑇))
2623, 24, 253syl 18 . . 3 ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵𝐽) → (𝐹 “ (Base‘𝑆)) = (Base‘𝑇))
2718, 22, 263eqtr3d 2693 . 2 ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵𝐽) → ((LSpan‘𝑇)‘(𝐹𝐵)) = (Base‘𝑇))
28 lmimlbs.k . . 3 𝐾 = (LBasis‘𝑇)
294, 28, 20islbs4 20219 . 2 ((𝐹𝐵) ∈ 𝐾 ↔ ((𝐹𝐵) ∈ (LIndS‘𝑇) ∧ ((LSpan‘𝑇)‘(𝐹𝐵)) = (Base‘𝑇)))
3014, 27, 29sylanbrc 699 1 ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵𝐽) → (𝐹𝐵) ∈ 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  wss 3607  cima 5146  1-1wf1 5923  ontowfo 5924  1-1-ontowf1o 5925  cfv 5926  (class class class)co 6690  Basecbs 15904  LSpanclspn 19019   LMHom clmhm 19067   LMIso clmim 19068  LBasisclbs 19122  LIndSclinds 20192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-0g 16149  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-grp 17472  df-minusg 17473  df-sbg 17474  df-subg 17638  df-ghm 17705  df-mgp 18536  df-ur 18548  df-ring 18595  df-lmod 18913  df-lss 18981  df-lsp 19020  df-lmhm 19070  df-lmim 19071  df-lbs 19123  df-lindf 20193  df-linds 20194
This theorem is referenced by:  lmiclbs  20224
  Copyright terms: Public domain W3C validator