![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmimfn | Structured version Visualization version GIF version |
Description: Lemma for module isomorphisms. (Contributed by Stefan O'Rear, 23-Aug-2015.) |
Ref | Expression |
---|---|
lmimfn | ⊢ LMIso Fn (LMod × LMod) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lmim 19235 | . 2 ⊢ LMIso = (𝑠 ∈ LMod, 𝑡 ∈ LMod ↦ {𝑔 ∈ (𝑠 LMHom 𝑡) ∣ 𝑔:(Base‘𝑠)–1-1-onto→(Base‘𝑡)}) | |
2 | ovex 6822 | . . 3 ⊢ (𝑠 LMHom 𝑡) ∈ V | |
3 | 2 | rabex 4943 | . 2 ⊢ {𝑔 ∈ (𝑠 LMHom 𝑡) ∣ 𝑔:(Base‘𝑠)–1-1-onto→(Base‘𝑡)} ∈ V |
4 | 1, 3 | fnmpt2i 7388 | 1 ⊢ LMIso Fn (LMod × LMod) |
Colors of variables: wff setvar class |
Syntax hints: {crab 3064 × cxp 5247 Fn wfn 6026 –1-1-onto→wf1o 6030 ‘cfv 6031 (class class class)co 6792 Basecbs 16063 LModclmod 19072 LMHom clmhm 19231 LMIso clmim 19232 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-fv 6039 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-1st 7314 df-2nd 7315 df-lmim 19235 |
This theorem is referenced by: brlmic 19280 |
Copyright terms: Public domain | W3C validator |