Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmiinv Structured version   Visualization version   GIF version

Theorem lmiinv 25905
 Description: The invariants of the line mirroring lie on the mirror line. Theorem 10.8 of [Schwabhauser] p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019.)
Hypotheses
Ref Expression
ismid.p 𝑃 = (Base‘𝐺)
ismid.d = (dist‘𝐺)
ismid.i 𝐼 = (Itv‘𝐺)
ismid.g (𝜑𝐺 ∈ TarskiG)
ismid.1 (𝜑𝐺DimTarskiG≥2)
lmif.m 𝑀 = ((lInvG‘𝐺)‘𝐷)
lmif.l 𝐿 = (LineG‘𝐺)
lmif.d (𝜑𝐷 ∈ ran 𝐿)
lmicl.1 (𝜑𝐴𝑃)
Assertion
Ref Expression
lmiinv (𝜑 → ((𝑀𝐴) = 𝐴𝐴𝐷))

Proof of Theorem lmiinv
StepHypRef Expression
1 ismid.p . . 3 𝑃 = (Base‘𝐺)
2 ismid.d . . 3 = (dist‘𝐺)
3 ismid.i . . 3 𝐼 = (Itv‘𝐺)
4 ismid.g . . 3 (𝜑𝐺 ∈ TarskiG)
5 ismid.1 . . 3 (𝜑𝐺DimTarskiG≥2)
6 lmif.m . . 3 𝑀 = ((lInvG‘𝐺)‘𝐷)
7 lmif.l . . 3 𝐿 = (LineG‘𝐺)
8 lmif.d . . 3 (𝜑𝐷 ∈ ran 𝐿)
9 lmicl.1 . . 3 (𝜑𝐴𝑃)
101, 2, 3, 4, 5, 6, 7, 8, 9, 9islmib 25900 . 2 (𝜑 → (𝐴 = (𝑀𝐴) ↔ ((𝐴(midG‘𝐺)𝐴) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝐴) ∨ 𝐴 = 𝐴))))
11 eqcom 2768 . . 3 (𝐴 = (𝑀𝐴) ↔ (𝑀𝐴) = 𝐴)
1211a1i 11 . 2 (𝜑 → (𝐴 = (𝑀𝐴) ↔ (𝑀𝐴) = 𝐴))
13 eqidd 2762 . . . . 5 (𝜑𝐴 = 𝐴)
1413olcd 407 . . . 4 (𝜑 → (𝐷(⟂G‘𝐺)(𝐴𝐿𝐴) ∨ 𝐴 = 𝐴))
1514biantrud 529 . . 3 (𝜑 → ((𝐴(midG‘𝐺)𝐴) ∈ 𝐷 ↔ ((𝐴(midG‘𝐺)𝐴) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝐴) ∨ 𝐴 = 𝐴))))
161, 2, 3, 4, 5, 9, 9midid 25894 . . . 4 (𝜑 → (𝐴(midG‘𝐺)𝐴) = 𝐴)
1716eleq1d 2825 . . 3 (𝜑 → ((𝐴(midG‘𝐺)𝐴) ∈ 𝐷𝐴𝐷))
1815, 17bitr3d 270 . 2 (𝜑 → (((𝐴(midG‘𝐺)𝐴) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝐴) ∨ 𝐴 = 𝐴)) ↔ 𝐴𝐷))
1910, 12, 183bitr3d 298 1 (𝜑 → ((𝑀𝐴) = 𝐴𝐴𝐷))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∨ wo 382   ∧ wa 383   = wceq 1632   ∈ wcel 2140   class class class wbr 4805  ran crn 5268  ‘cfv 6050  (class class class)co 6815  2c2 11283  Basecbs 16080  distcds 16173  TarskiGcstrkg 25550  DimTarskiG≥cstrkgld 25554  Itvcitv 25556  LineGclng 25557  ⟂Gcperpg 25811  midGcmid 25885  lInvGclmi 25886 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-int 4629  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-om 7233  df-1st 7335  df-2nd 7336  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-1o 7731  df-oadd 7735  df-er 7914  df-map 8028  df-pm 8029  df-en 8125  df-dom 8126  df-sdom 8127  df-fin 8128  df-card 8976  df-cda 9203  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-nn 11234  df-2 11292  df-3 11293  df-n0 11506  df-xnn0 11577  df-z 11591  df-uz 11901  df-fz 12541  df-fzo 12681  df-hash 13333  df-word 13506  df-concat 13508  df-s1 13509  df-s2 13814  df-s3 13815  df-trkgc 25568  df-trkgb 25569  df-trkgcb 25570  df-trkgld 25572  df-trkg 25573  df-cgrg 25627  df-leg 25699  df-mir 25769  df-rag 25810  df-perpg 25812  df-mid 25887  df-lmi 25888 This theorem is referenced by:  lmicinv  25906  lmiisolem  25909  hypcgrlem2  25913  lmiopp  25915
 Copyright terms: Public domain W3C validator