Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmhmlnmsplit Structured version   Visualization version   GIF version

Theorem lmhmlnmsplit 38155
Description: If the kernel and range of a homomorphism of left modules are Noetherian, then so is the domain. (Contributed by Stefan O'Rear, 1-Jan-2015.) (Revised by Stefan O'Rear, 12-Jun-2015.)
Hypotheses
Ref Expression
lmhmfgsplit.z 0 = (0g𝑇)
lmhmfgsplit.k 𝐾 = (𝐹 “ { 0 })
lmhmfgsplit.u 𝑈 = (𝑆s 𝐾)
lmhmfgsplit.v 𝑉 = (𝑇s ran 𝐹)
Assertion
Ref Expression
lmhmlnmsplit ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) → 𝑆 ∈ LNoeM)

Proof of Theorem lmhmlnmsplit
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 lmhmlmod1 19231 . . 3 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod)
213ad2ant1 1128 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) → 𝑆 ∈ LMod)
3 eqid 2756 . . . . . 6 (LSubSp‘𝑆) = (LSubSp‘𝑆)
4 eqid 2756 . . . . . 6 (𝑆s 𝑎) = (𝑆s 𝑎)
53, 4reslmhm 19250 . . . . 5 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → (𝐹𝑎) ∈ ((𝑆s 𝑎) LMHom 𝑇))
653ad2antl1 1201 . . . 4 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → (𝐹𝑎) ∈ ((𝑆s 𝑎) LMHom 𝑇))
7 cnvresima 5780 . . . . . . . 8 ((𝐹𝑎) “ { 0 }) = ((𝐹 “ { 0 }) ∩ 𝑎)
8 lmhmfgsplit.k . . . . . . . . . 10 𝐾 = (𝐹 “ { 0 })
98eqcomi 2765 . . . . . . . . 9 (𝐹 “ { 0 }) = 𝐾
109ineq1i 3949 . . . . . . . 8 ((𝐹 “ { 0 }) ∩ 𝑎) = (𝐾𝑎)
11 incom 3944 . . . . . . . 8 (𝐾𝑎) = (𝑎𝐾)
127, 10, 113eqtri 2782 . . . . . . 7 ((𝐹𝑎) “ { 0 }) = (𝑎𝐾)
1312oveq2i 6820 . . . . . 6 ((𝑆s 𝑎) ↾s ((𝐹𝑎) “ { 0 })) = ((𝑆s 𝑎) ↾s (𝑎𝐾))
14 lmhmfgsplit.u . . . . . . . . 9 𝑈 = (𝑆s 𝐾)
1514oveq1i 6819 . . . . . . . 8 (𝑈s (𝑎𝐾)) = ((𝑆s 𝐾) ↾s (𝑎𝐾))
16 simpl1 1228 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → 𝐹 ∈ (𝑆 LMHom 𝑇))
17 cnvexg 7273 . . . . . . . . . . . 12 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ V)
18 imaexg 7264 . . . . . . . . . . . 12 (𝐹 ∈ V → (𝐹 “ { 0 }) ∈ V)
1917, 18syl 17 . . . . . . . . . . 11 (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝐹 “ { 0 }) ∈ V)
208, 19syl5eqel 2839 . . . . . . . . . 10 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐾 ∈ V)
2116, 20syl 17 . . . . . . . . 9 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → 𝐾 ∈ V)
22 inss2 3973 . . . . . . . . 9 (𝑎𝐾) ⊆ 𝐾
23 ressabs 16137 . . . . . . . . 9 ((𝐾 ∈ V ∧ (𝑎𝐾) ⊆ 𝐾) → ((𝑆s 𝐾) ↾s (𝑎𝐾)) = (𝑆s (𝑎𝐾)))
2421, 22, 23sylancl 697 . . . . . . . 8 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → ((𝑆s 𝐾) ↾s (𝑎𝐾)) = (𝑆s (𝑎𝐾)))
2515, 24syl5eq 2802 . . . . . . 7 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → (𝑈s (𝑎𝐾)) = (𝑆s (𝑎𝐾)))
26 vex 3339 . . . . . . . 8 𝑎 ∈ V
27 inss1 3972 . . . . . . . 8 (𝑎𝐾) ⊆ 𝑎
28 ressabs 16137 . . . . . . . 8 ((𝑎 ∈ V ∧ (𝑎𝐾) ⊆ 𝑎) → ((𝑆s 𝑎) ↾s (𝑎𝐾)) = (𝑆s (𝑎𝐾)))
2926, 27, 28mp2an 710 . . . . . . 7 ((𝑆s 𝑎) ↾s (𝑎𝐾)) = (𝑆s (𝑎𝐾))
3025, 29syl6reqr 2809 . . . . . 6 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → ((𝑆s 𝑎) ↾s (𝑎𝐾)) = (𝑈s (𝑎𝐾)))
3113, 30syl5eq 2802 . . . . 5 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → ((𝑆s 𝑎) ↾s ((𝐹𝑎) “ { 0 })) = (𝑈s (𝑎𝐾)))
32 simpl2 1230 . . . . . 6 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → 𝑈 ∈ LNoeM)
332adantr 472 . . . . . . . 8 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → 𝑆 ∈ LMod)
34 simpr 479 . . . . . . . 8 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → 𝑎 ∈ (LSubSp‘𝑆))
35 lmhmfgsplit.z . . . . . . . . . 10 0 = (0g𝑇)
368, 35, 3lmhmkerlss 19249 . . . . . . . . 9 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐾 ∈ (LSubSp‘𝑆))
3716, 36syl 17 . . . . . . . 8 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → 𝐾 ∈ (LSubSp‘𝑆))
383lssincl 19163 . . . . . . . 8 ((𝑆 ∈ LMod ∧ 𝑎 ∈ (LSubSp‘𝑆) ∧ 𝐾 ∈ (LSubSp‘𝑆)) → (𝑎𝐾) ∈ (LSubSp‘𝑆))
3933, 34, 37, 38syl3anc 1477 . . . . . . 7 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → (𝑎𝐾) ∈ (LSubSp‘𝑆))
4022a1i 11 . . . . . . 7 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → (𝑎𝐾) ⊆ 𝐾)
41 eqid 2756 . . . . . . . . 9 (LSubSp‘𝑈) = (LSubSp‘𝑈)
4214, 3, 41lsslss 19159 . . . . . . . 8 ((𝑆 ∈ LMod ∧ 𝐾 ∈ (LSubSp‘𝑆)) → ((𝑎𝐾) ∈ (LSubSp‘𝑈) ↔ ((𝑎𝐾) ∈ (LSubSp‘𝑆) ∧ (𝑎𝐾) ⊆ 𝐾)))
4333, 37, 42syl2anc 696 . . . . . . 7 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → ((𝑎𝐾) ∈ (LSubSp‘𝑈) ↔ ((𝑎𝐾) ∈ (LSubSp‘𝑆) ∧ (𝑎𝐾) ⊆ 𝐾)))
4439, 40, 43mpbir2and 995 . . . . . 6 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → (𝑎𝐾) ∈ (LSubSp‘𝑈))
45 eqid 2756 . . . . . . 7 (𝑈s (𝑎𝐾)) = (𝑈s (𝑎𝐾))
4641, 45lnmlssfg 38148 . . . . . 6 ((𝑈 ∈ LNoeM ∧ (𝑎𝐾) ∈ (LSubSp‘𝑈)) → (𝑈s (𝑎𝐾)) ∈ LFinGen)
4732, 44, 46syl2anc 696 . . . . 5 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → (𝑈s (𝑎𝐾)) ∈ LFinGen)
4831, 47eqeltrd 2835 . . . 4 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → ((𝑆s 𝑎) ↾s ((𝐹𝑎) “ { 0 })) ∈ LFinGen)
49 lmhmfgsplit.v . . . . . . . . 9 𝑉 = (𝑇s ran 𝐹)
5049oveq1i 6819 . . . . . . . 8 (𝑉s ran (𝐹𝑎)) = ((𝑇s ran 𝐹) ↾s ran (𝐹𝑎))
51 rnexg 7259 . . . . . . . . 9 (𝐹 ∈ (𝑆 LMHom 𝑇) → ran 𝐹 ∈ V)
52 resexg 5596 . . . . . . . . . 10 (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝐹𝑎) ∈ V)
53 rnexg 7259 . . . . . . . . . 10 ((𝐹𝑎) ∈ V → ran (𝐹𝑎) ∈ V)
5452, 53syl 17 . . . . . . . . 9 (𝐹 ∈ (𝑆 LMHom 𝑇) → ran (𝐹𝑎) ∈ V)
55 ressress 16136 . . . . . . . . 9 ((ran 𝐹 ∈ V ∧ ran (𝐹𝑎) ∈ V) → ((𝑇s ran 𝐹) ↾s ran (𝐹𝑎)) = (𝑇s (ran 𝐹 ∩ ran (𝐹𝑎))))
5651, 54, 55syl2anc 696 . . . . . . . 8 (𝐹 ∈ (𝑆 LMHom 𝑇) → ((𝑇s ran 𝐹) ↾s ran (𝐹𝑎)) = (𝑇s (ran 𝐹 ∩ ran (𝐹𝑎))))
5750, 56syl5eq 2802 . . . . . . 7 (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝑉s ran (𝐹𝑎)) = (𝑇s (ran 𝐹 ∩ ran (𝐹𝑎))))
58 incom 3944 . . . . . . . . 9 (ran 𝐹 ∩ ran (𝐹𝑎)) = (ran (𝐹𝑎) ∩ ran 𝐹)
59 resss 5576 . . . . . . . . . . 11 (𝐹𝑎) ⊆ 𝐹
60 rnss 5505 . . . . . . . . . . 11 ((𝐹𝑎) ⊆ 𝐹 → ran (𝐹𝑎) ⊆ ran 𝐹)
6159, 60ax-mp 5 . . . . . . . . . 10 ran (𝐹𝑎) ⊆ ran 𝐹
62 df-ss 3725 . . . . . . . . . 10 (ran (𝐹𝑎) ⊆ ran 𝐹 ↔ (ran (𝐹𝑎) ∩ ran 𝐹) = ran (𝐹𝑎))
6361, 62mpbi 220 . . . . . . . . 9 (ran (𝐹𝑎) ∩ ran 𝐹) = ran (𝐹𝑎)
6458, 63eqtr2i 2779 . . . . . . . 8 ran (𝐹𝑎) = (ran 𝐹 ∩ ran (𝐹𝑎))
6564oveq2i 6820 . . . . . . 7 (𝑇s ran (𝐹𝑎)) = (𝑇s (ran 𝐹 ∩ ran (𝐹𝑎)))
6657, 65syl6reqr 2809 . . . . . 6 (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝑇s ran (𝐹𝑎)) = (𝑉s ran (𝐹𝑎)))
6716, 66syl 17 . . . . 5 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → (𝑇s ran (𝐹𝑎)) = (𝑉s ran (𝐹𝑎)))
68 simpl3 1232 . . . . . 6 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → 𝑉 ∈ LNoeM)
69 lmhmrnlss 19248 . . . . . . . 8 ((𝐹𝑎) ∈ ((𝑆s 𝑎) LMHom 𝑇) → ran (𝐹𝑎) ∈ (LSubSp‘𝑇))
706, 69syl 17 . . . . . . 7 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → ran (𝐹𝑎) ∈ (LSubSp‘𝑇))
7161a1i 11 . . . . . . 7 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → ran (𝐹𝑎) ⊆ ran 𝐹)
72 lmhmlmod2 19230 . . . . . . . . 9 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod)
7316, 72syl 17 . . . . . . . 8 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → 𝑇 ∈ LMod)
74 lmhmrnlss 19248 . . . . . . . . 9 (𝐹 ∈ (𝑆 LMHom 𝑇) → ran 𝐹 ∈ (LSubSp‘𝑇))
7516, 74syl 17 . . . . . . . 8 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → ran 𝐹 ∈ (LSubSp‘𝑇))
76 eqid 2756 . . . . . . . . 9 (LSubSp‘𝑇) = (LSubSp‘𝑇)
77 eqid 2756 . . . . . . . . 9 (LSubSp‘𝑉) = (LSubSp‘𝑉)
7849, 76, 77lsslss 19159 . . . . . . . 8 ((𝑇 ∈ LMod ∧ ran 𝐹 ∈ (LSubSp‘𝑇)) → (ran (𝐹𝑎) ∈ (LSubSp‘𝑉) ↔ (ran (𝐹𝑎) ∈ (LSubSp‘𝑇) ∧ ran (𝐹𝑎) ⊆ ran 𝐹)))
7973, 75, 78syl2anc 696 . . . . . . 7 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → (ran (𝐹𝑎) ∈ (LSubSp‘𝑉) ↔ (ran (𝐹𝑎) ∈ (LSubSp‘𝑇) ∧ ran (𝐹𝑎) ⊆ ran 𝐹)))
8070, 71, 79mpbir2and 995 . . . . . 6 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → ran (𝐹𝑎) ∈ (LSubSp‘𝑉))
81 eqid 2756 . . . . . . 7 (𝑉s ran (𝐹𝑎)) = (𝑉s ran (𝐹𝑎))
8277, 81lnmlssfg 38148 . . . . . 6 ((𝑉 ∈ LNoeM ∧ ran (𝐹𝑎) ∈ (LSubSp‘𝑉)) → (𝑉s ran (𝐹𝑎)) ∈ LFinGen)
8368, 80, 82syl2anc 696 . . . . 5 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → (𝑉s ran (𝐹𝑎)) ∈ LFinGen)
8467, 83eqeltrd 2835 . . . 4 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → (𝑇s ran (𝐹𝑎)) ∈ LFinGen)
85 eqid 2756 . . . . 5 ((𝐹𝑎) “ { 0 }) = ((𝐹𝑎) “ { 0 })
86 eqid 2756 . . . . 5 ((𝑆s 𝑎) ↾s ((𝐹𝑎) “ { 0 })) = ((𝑆s 𝑎) ↾s ((𝐹𝑎) “ { 0 }))
87 eqid 2756 . . . . 5 (𝑇s ran (𝐹𝑎)) = (𝑇s ran (𝐹𝑎))
8835, 85, 86, 87lmhmfgsplit 38154 . . . 4 (((𝐹𝑎) ∈ ((𝑆s 𝑎) LMHom 𝑇) ∧ ((𝑆s 𝑎) ↾s ((𝐹𝑎) “ { 0 })) ∈ LFinGen ∧ (𝑇s ran (𝐹𝑎)) ∈ LFinGen) → (𝑆s 𝑎) ∈ LFinGen)
896, 48, 84, 88syl3anc 1477 . . 3 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) ∧ 𝑎 ∈ (LSubSp‘𝑆)) → (𝑆s 𝑎) ∈ LFinGen)
9089ralrimiva 3100 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) → ∀𝑎 ∈ (LSubSp‘𝑆)(𝑆s 𝑎) ∈ LFinGen)
913islnm 38145 . 2 (𝑆 ∈ LNoeM ↔ (𝑆 ∈ LMod ∧ ∀𝑎 ∈ (LSubSp‘𝑆)(𝑆s 𝑎) ∈ LFinGen))
922, 90, 91sylanbrc 701 1 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ LNoeM ∧ 𝑉 ∈ LNoeM) → 𝑆 ∈ LNoeM)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1628  wcel 2135  wral 3046  Vcvv 3336  cin 3710  wss 3711  {csn 4317  ccnv 5261  ran crn 5263  cres 5264  cima 5265  cfv 6045  (class class class)co 6809  s cress 16056  0gc0g 16298  LModclmod 19061  LSubSpclss 19130   LMHom clmhm 19217  LFinGenclfig 38135  LNoeMclnm 38143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1867  ax-4 1882  ax-5 1984  ax-6 2050  ax-7 2086  ax-8 2137  ax-9 2144  ax-10 2164  ax-11 2179  ax-12 2192  ax-13 2387  ax-ext 2736  ax-rep 4919  ax-sep 4929  ax-nul 4937  ax-pow 4988  ax-pr 5051  ax-un 7110  ax-cnex 10180  ax-resscn 10181  ax-1cn 10182  ax-icn 10183  ax-addcl 10184  ax-addrcl 10185  ax-mulcl 10186  ax-mulrcl 10187  ax-mulcom 10188  ax-addass 10189  ax-mulass 10190  ax-distr 10191  ax-i2m1 10192  ax-1ne0 10193  ax-1rid 10194  ax-rnegex 10195  ax-rrecex 10196  ax-cnre 10197  ax-pre-lttri 10198  ax-pre-lttrn 10199  ax-pre-ltadd 10200  ax-pre-mulgt0 10201
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1631  df-ex 1850  df-nf 1855  df-sb 2043  df-eu 2607  df-mo 2608  df-clab 2743  df-cleq 2749  df-clel 2752  df-nfc 2887  df-ne 2929  df-nel 3032  df-ral 3051  df-rex 3052  df-reu 3053  df-rmo 3054  df-rab 3055  df-v 3338  df-sbc 3573  df-csb 3671  df-dif 3714  df-un 3716  df-in 3718  df-ss 3725  df-pss 3727  df-nul 4055  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4585  df-int 4624  df-iun 4670  df-br 4801  df-opab 4861  df-mpt 4878  df-tr 4901  df-id 5170  df-eprel 5175  df-po 5183  df-so 5184  df-fr 5221  df-we 5223  df-xp 5268  df-rel 5269  df-cnv 5270  df-co 5271  df-dm 5272  df-rn 5273  df-res 5274  df-ima 5275  df-pred 5837  df-ord 5883  df-on 5884  df-lim 5885  df-suc 5886  df-iota 6008  df-fun 6047  df-fn 6048  df-f 6049  df-f1 6050  df-fo 6051  df-f1o 6052  df-fv 6053  df-riota 6770  df-ov 6812  df-oprab 6813  df-mpt2 6814  df-om 7227  df-1st 7329  df-2nd 7330  df-wrecs 7572  df-recs 7633  df-rdg 7671  df-1o 7725  df-oadd 7729  df-er 7907  df-en 8118  df-dom 8119  df-sdom 8120  df-fin 8121  df-pnf 10264  df-mnf 10265  df-xr 10266  df-ltxr 10267  df-le 10268  df-sub 10456  df-neg 10457  df-nn 11209  df-2 11267  df-3 11268  df-4 11269  df-5 11270  df-6 11271  df-ndx 16058  df-slot 16059  df-base 16061  df-sets 16062  df-ress 16063  df-plusg 16152  df-sca 16155  df-vsca 16156  df-0g 16300  df-mgm 17439  df-sgrp 17481  df-mnd 17492  df-submnd 17533  df-grp 17622  df-minusg 17623  df-sbg 17624  df-subg 17788  df-ghm 17855  df-cntz 17946  df-lsm 18247  df-cmn 18391  df-abl 18392  df-mgp 18686  df-ur 18698  df-ring 18745  df-lmod 19063  df-lss 19131  df-lsp 19170  df-lmhm 19220  df-lfig 38136  df-lnm 38144
This theorem is referenced by:  pwslnmlem2  38161
  Copyright terms: Public domain W3C validator