Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmhmfgima Structured version   Visualization version   GIF version

Theorem lmhmfgima 38156
Description: A homomorphism maps finitely generated submodules to finitely generated submodules. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypotheses
Ref Expression
lmhmfgima.y 𝑌 = (𝑇s (𝐹𝐴))
lmhmfgima.x 𝑋 = (𝑆s 𝐴)
lmhmfgima.u 𝑈 = (LSubSp‘𝑆)
lmhmfgima.xf (𝜑𝑋 ∈ LFinGen)
lmhmfgima.a (𝜑𝐴𝑈)
lmhmfgima.f (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
Assertion
Ref Expression
lmhmfgima (𝜑𝑌 ∈ LFinGen)

Proof of Theorem lmhmfgima
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 lmhmfgima.y . 2 𝑌 = (𝑇s (𝐹𝐴))
2 lmhmfgima.xf . . . 4 (𝜑𝑋 ∈ LFinGen)
3 lmhmfgima.f . . . . . 6 (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
4 lmhmlmod1 19235 . . . . . 6 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod)
53, 4syl 17 . . . . 5 (𝜑𝑆 ∈ LMod)
6 lmhmfgima.a . . . . 5 (𝜑𝐴𝑈)
7 lmhmfgima.x . . . . . 6 𝑋 = (𝑆s 𝐴)
8 lmhmfgima.u . . . . . 6 𝑈 = (LSubSp‘𝑆)
9 eqid 2760 . . . . . 6 (LSpan‘𝑆) = (LSpan‘𝑆)
10 eqid 2760 . . . . . 6 (Base‘𝑆) = (Base‘𝑆)
117, 8, 9, 10islssfg2 38143 . . . . 5 ((𝑆 ∈ LMod ∧ 𝐴𝑈) → (𝑋 ∈ LFinGen ↔ ∃𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)((LSpan‘𝑆)‘𝑥) = 𝐴))
125, 6, 11syl2anc 696 . . . 4 (𝜑 → (𝑋 ∈ LFinGen ↔ ∃𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)((LSpan‘𝑆)‘𝑥) = 𝐴))
132, 12mpbid 222 . . 3 (𝜑 → ∃𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)((LSpan‘𝑆)‘𝑥) = 𝐴)
14 inss1 3976 . . . . . . . . . 10 (𝒫 (Base‘𝑆) ∩ Fin) ⊆ 𝒫 (Base‘𝑆)
1514sseli 3740 . . . . . . . . 9 (𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin) → 𝑥 ∈ 𝒫 (Base‘𝑆))
1615elpwid 4314 . . . . . . . 8 (𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin) → 𝑥 ⊆ (Base‘𝑆))
17 eqid 2760 . . . . . . . . 9 (LSpan‘𝑇) = (LSpan‘𝑇)
1810, 9, 17lmhmlsp 19251 . . . . . . . 8 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑥 ⊆ (Base‘𝑆)) → (𝐹 “ ((LSpan‘𝑆)‘𝑥)) = ((LSpan‘𝑇)‘(𝐹𝑥)))
193, 16, 18syl2an 495 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → (𝐹 “ ((LSpan‘𝑆)‘𝑥)) = ((LSpan‘𝑇)‘(𝐹𝑥)))
2019oveq2d 6829 . . . . . 6 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → (𝑇s (𝐹 “ ((LSpan‘𝑆)‘𝑥))) = (𝑇s ((LSpan‘𝑇)‘(𝐹𝑥))))
21 lmhmlmod2 19234 . . . . . . . . 9 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod)
223, 21syl 17 . . . . . . . 8 (𝜑𝑇 ∈ LMod)
2322adantr 472 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → 𝑇 ∈ LMod)
24 imassrn 5635 . . . . . . . . 9 (𝐹𝑥) ⊆ ran 𝐹
25 eqid 2760 . . . . . . . . . . . 12 (Base‘𝑇) = (Base‘𝑇)
2610, 25lmhmf 19236 . . . . . . . . . . 11 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
273, 26syl 17 . . . . . . . . . 10 (𝜑𝐹:(Base‘𝑆)⟶(Base‘𝑇))
28 frn 6214 . . . . . . . . . 10 (𝐹:(Base‘𝑆)⟶(Base‘𝑇) → ran 𝐹 ⊆ (Base‘𝑇))
2927, 28syl 17 . . . . . . . . 9 (𝜑 → ran 𝐹 ⊆ (Base‘𝑇))
3024, 29syl5ss 3755 . . . . . . . 8 (𝜑 → (𝐹𝑥) ⊆ (Base‘𝑇))
3130adantr 472 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → (𝐹𝑥) ⊆ (Base‘𝑇))
32 inss2 3977 . . . . . . . . . 10 (𝒫 (Base‘𝑆) ∩ Fin) ⊆ Fin
3332sseli 3740 . . . . . . . . 9 (𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin) → 𝑥 ∈ Fin)
3433adantl 473 . . . . . . . 8 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → 𝑥 ∈ Fin)
35 ffun 6209 . . . . . . . . . . 11 (𝐹:(Base‘𝑆)⟶(Base‘𝑇) → Fun 𝐹)
3627, 35syl 17 . . . . . . . . . 10 (𝜑 → Fun 𝐹)
3736adantr 472 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → Fun 𝐹)
3816adantl 473 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → 𝑥 ⊆ (Base‘𝑆))
39 fdm 6212 . . . . . . . . . . . 12 (𝐹:(Base‘𝑆)⟶(Base‘𝑇) → dom 𝐹 = (Base‘𝑆))
4027, 39syl 17 . . . . . . . . . . 11 (𝜑 → dom 𝐹 = (Base‘𝑆))
4140adantr 472 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → dom 𝐹 = (Base‘𝑆))
4238, 41sseqtr4d 3783 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → 𝑥 ⊆ dom 𝐹)
43 fores 6285 . . . . . . . . 9 ((Fun 𝐹𝑥 ⊆ dom 𝐹) → (𝐹𝑥):𝑥onto→(𝐹𝑥))
4437, 42, 43syl2anc 696 . . . . . . . 8 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → (𝐹𝑥):𝑥onto→(𝐹𝑥))
45 fofi 8417 . . . . . . . 8 ((𝑥 ∈ Fin ∧ (𝐹𝑥):𝑥onto→(𝐹𝑥)) → (𝐹𝑥) ∈ Fin)
4634, 44, 45syl2anc 696 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → (𝐹𝑥) ∈ Fin)
47 eqid 2760 . . . . . . . 8 (𝑇s ((LSpan‘𝑇)‘(𝐹𝑥))) = (𝑇s ((LSpan‘𝑇)‘(𝐹𝑥)))
4817, 25, 47islssfgi 38144 . . . . . . 7 ((𝑇 ∈ LMod ∧ (𝐹𝑥) ⊆ (Base‘𝑇) ∧ (𝐹𝑥) ∈ Fin) → (𝑇s ((LSpan‘𝑇)‘(𝐹𝑥))) ∈ LFinGen)
4923, 31, 46, 48syl3anc 1477 . . . . . 6 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → (𝑇s ((LSpan‘𝑇)‘(𝐹𝑥))) ∈ LFinGen)
5020, 49eqeltrd 2839 . . . . 5 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → (𝑇s (𝐹 “ ((LSpan‘𝑆)‘𝑥))) ∈ LFinGen)
51 imaeq2 5620 . . . . . . 7 (((LSpan‘𝑆)‘𝑥) = 𝐴 → (𝐹 “ ((LSpan‘𝑆)‘𝑥)) = (𝐹𝐴))
5251oveq2d 6829 . . . . . 6 (((LSpan‘𝑆)‘𝑥) = 𝐴 → (𝑇s (𝐹 “ ((LSpan‘𝑆)‘𝑥))) = (𝑇s (𝐹𝐴)))
5352eleq1d 2824 . . . . 5 (((LSpan‘𝑆)‘𝑥) = 𝐴 → ((𝑇s (𝐹 “ ((LSpan‘𝑆)‘𝑥))) ∈ LFinGen ↔ (𝑇s (𝐹𝐴)) ∈ LFinGen))
5450, 53syl5ibcom 235 . . . 4 ((𝜑𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)) → (((LSpan‘𝑆)‘𝑥) = 𝐴 → (𝑇s (𝐹𝐴)) ∈ LFinGen))
5554rexlimdva 3169 . . 3 (𝜑 → (∃𝑥 ∈ (𝒫 (Base‘𝑆) ∩ Fin)((LSpan‘𝑆)‘𝑥) = 𝐴 → (𝑇s (𝐹𝐴)) ∈ LFinGen))
5613, 55mpd 15 . 2 (𝜑 → (𝑇s (𝐹𝐴)) ∈ LFinGen)
571, 56syl5eqel 2843 1 (𝜑𝑌 ∈ LFinGen)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  wrex 3051  cin 3714  wss 3715  𝒫 cpw 4302  dom cdm 5266  ran crn 5267  cres 5268  cima 5269  Fun wfun 6043  wf 6045  ontowfo 6047  cfv 6049  (class class class)co 6813  Fincfn 8121  Basecbs 16059  s cress 16060  LModclmod 19065  LSubSpclss 19134  LSpanclspn 19173   LMHom clmhm 19221  LFinGenclfig 38139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-sca 16159  df-vsca 16160  df-0g 16304  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-grp 17626  df-minusg 17627  df-sbg 17628  df-subg 17792  df-ghm 17859  df-mgp 18690  df-ur 18702  df-ring 18749  df-lmod 19067  df-lss 19135  df-lsp 19174  df-lmhm 19224  df-lfig 38140
This theorem is referenced by:  lnmepi  38157
  Copyright terms: Public domain W3C validator