MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmff Structured version   Visualization version   GIF version

Theorem lmff 21327
Description: If 𝐹 converges, there is some upper integer set on which 𝐹 is a total function. (Contributed by Mario Carneiro, 31-Dec-2013.)
Hypotheses
Ref Expression
lmff.1 𝑍 = (ℤ𝑀)
lmff.3 (𝜑𝐽 ∈ (TopOn‘𝑋))
lmff.4 (𝜑𝑀 ∈ ℤ)
lmff.5 (𝜑𝐹 ∈ dom (⇝𝑡𝐽))
Assertion
Ref Expression
lmff (𝜑 → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)
Distinct variable groups:   𝑗,𝐹   𝑗,𝐽   𝑗,𝑀   𝜑,𝑗   𝑗,𝑋   𝑗,𝑍

Proof of Theorem lmff
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmff.5 . . . . . 6 (𝜑𝐹 ∈ dom (⇝𝑡𝐽))
2 eldm2g 5475 . . . . . . 7 (𝐹 ∈ dom (⇝𝑡𝐽) → (𝐹 ∈ dom (⇝𝑡𝐽) ↔ ∃𝑦𝐹, 𝑦⟩ ∈ (⇝𝑡𝐽)))
32ibi 256 . . . . . 6 (𝐹 ∈ dom (⇝𝑡𝐽) → ∃𝑦𝐹, 𝑦⟩ ∈ (⇝𝑡𝐽))
41, 3syl 17 . . . . 5 (𝜑 → ∃𝑦𝐹, 𝑦⟩ ∈ (⇝𝑡𝐽))
5 df-br 4805 . . . . . 6 (𝐹(⇝𝑡𝐽)𝑦 ↔ ⟨𝐹, 𝑦⟩ ∈ (⇝𝑡𝐽))
65exbii 1923 . . . . 5 (∃𝑦 𝐹(⇝𝑡𝐽)𝑦 ↔ ∃𝑦𝐹, 𝑦⟩ ∈ (⇝𝑡𝐽))
74, 6sylibr 224 . . . 4 (𝜑 → ∃𝑦 𝐹(⇝𝑡𝐽)𝑦)
8 lmff.3 . . . . . 6 (𝜑𝐽 ∈ (TopOn‘𝑋))
9 lmcl 21323 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹(⇝𝑡𝐽)𝑦) → 𝑦𝑋)
108, 9sylan 489 . . . . 5 ((𝜑𝐹(⇝𝑡𝐽)𝑦) → 𝑦𝑋)
11 eleq2 2828 . . . . . . 7 (𝑗 = 𝑋 → (𝑦𝑗𝑦𝑋))
12 feq3 6189 . . . . . . . 8 (𝑗 = 𝑋 → ((𝐹𝑥):𝑥𝑗 ↔ (𝐹𝑥):𝑥𝑋))
1312rexbidv 3190 . . . . . . 7 (𝑗 = 𝑋 → (∃𝑥 ∈ ran ℤ(𝐹𝑥):𝑥𝑗 ↔ ∃𝑥 ∈ ran ℤ(𝐹𝑥):𝑥𝑋))
1411, 13imbi12d 333 . . . . . 6 (𝑗 = 𝑋 → ((𝑦𝑗 → ∃𝑥 ∈ ran ℤ(𝐹𝑥):𝑥𝑗) ↔ (𝑦𝑋 → ∃𝑥 ∈ ran ℤ(𝐹𝑥):𝑥𝑋)))
158lmbr 21284 . . . . . . . 8 (𝜑 → (𝐹(⇝𝑡𝐽)𝑦 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑦𝑋 ∧ ∀𝑗𝐽 (𝑦𝑗 → ∃𝑥 ∈ ran ℤ(𝐹𝑥):𝑥𝑗))))
1615biimpa 502 . . . . . . 7 ((𝜑𝐹(⇝𝑡𝐽)𝑦) → (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑦𝑋 ∧ ∀𝑗𝐽 (𝑦𝑗 → ∃𝑥 ∈ ran ℤ(𝐹𝑥):𝑥𝑗)))
1716simp3d 1139 . . . . . 6 ((𝜑𝐹(⇝𝑡𝐽)𝑦) → ∀𝑗𝐽 (𝑦𝑗 → ∃𝑥 ∈ ran ℤ(𝐹𝑥):𝑥𝑗))
18 toponmax 20952 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
198, 18syl 17 . . . . . . 7 (𝜑𝑋𝐽)
2019adantr 472 . . . . . 6 ((𝜑𝐹(⇝𝑡𝐽)𝑦) → 𝑋𝐽)
2114, 17, 20rspcdva 3455 . . . . 5 ((𝜑𝐹(⇝𝑡𝐽)𝑦) → (𝑦𝑋 → ∃𝑥 ∈ ran ℤ(𝐹𝑥):𝑥𝑋))
2210, 21mpd 15 . . . 4 ((𝜑𝐹(⇝𝑡𝐽)𝑦) → ∃𝑥 ∈ ran ℤ(𝐹𝑥):𝑥𝑋)
237, 22exlimddv 2012 . . 3 (𝜑 → ∃𝑥 ∈ ran ℤ(𝐹𝑥):𝑥𝑋)
24 uzf 11902 . . . 4 :ℤ⟶𝒫 ℤ
25 ffn 6206 . . . 4 (ℤ:ℤ⟶𝒫 ℤ → ℤ Fn ℤ)
26 reseq2 5546 . . . . . 6 (𝑥 = (ℤ𝑗) → (𝐹𝑥) = (𝐹 ↾ (ℤ𝑗)))
27 id 22 . . . . . 6 (𝑥 = (ℤ𝑗) → 𝑥 = (ℤ𝑗))
2826, 27feq12d 6194 . . . . 5 (𝑥 = (ℤ𝑗) → ((𝐹𝑥):𝑥𝑋 ↔ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋))
2928rexrn 6525 . . . 4 (ℤ Fn ℤ → (∃𝑥 ∈ ran ℤ(𝐹𝑥):𝑥𝑋 ↔ ∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋))
3024, 25, 29mp2b 10 . . 3 (∃𝑥 ∈ ran ℤ(𝐹𝑥):𝑥𝑋 ↔ ∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)
3123, 30sylib 208 . 2 (𝜑 → ∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)
32 lmff.4 . . . 4 (𝜑𝑀 ∈ ℤ)
33 lmff.1 . . . . 5 𝑍 = (ℤ𝑀)
3433rexuz3 14307 . . . 4 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑥 ∈ (ℤ𝑗)(𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝑋) ↔ ∃𝑗 ∈ ℤ ∀𝑥 ∈ (ℤ𝑗)(𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝑋)))
3532, 34syl 17 . . 3 (𝜑 → (∃𝑗𝑍𝑥 ∈ (ℤ𝑗)(𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝑋) ↔ ∃𝑗 ∈ ℤ ∀𝑥 ∈ (ℤ𝑗)(𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝑋)))
3616simp1d 1137 . . . . . . 7 ((𝜑𝐹(⇝𝑡𝐽)𝑦) → 𝐹 ∈ (𝑋pm ℂ))
377, 36exlimddv 2012 . . . . . 6 (𝜑𝐹 ∈ (𝑋pm ℂ))
38 pmfun 8045 . . . . . 6 (𝐹 ∈ (𝑋pm ℂ) → Fun 𝐹)
3937, 38syl 17 . . . . 5 (𝜑 → Fun 𝐹)
40 ffvresb 6558 . . . . 5 (Fun 𝐹 → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋 ↔ ∀𝑥 ∈ (ℤ𝑗)(𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝑋)))
4139, 40syl 17 . . . 4 (𝜑 → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋 ↔ ∀𝑥 ∈ (ℤ𝑗)(𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝑋)))
4241rexbidv 3190 . . 3 (𝜑 → (∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋 ↔ ∃𝑗𝑍𝑥 ∈ (ℤ𝑗)(𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝑋)))
4341rexbidv 3190 . . 3 (𝜑 → (∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋 ↔ ∃𝑗 ∈ ℤ ∀𝑥 ∈ (ℤ𝑗)(𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝑋)))
4435, 42, 433bitr4d 300 . 2 (𝜑 → (∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋 ↔ ∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋))
4531, 44mpbird 247 1 (𝜑 → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wex 1853  wcel 2139  wral 3050  wrex 3051  𝒫 cpw 4302  cop 4327   class class class wbr 4804  dom cdm 5266  ran crn 5267  cres 5268  Fun wfun 6043   Fn wfn 6044  wf 6045  cfv 6049  (class class class)co 6814  pm cpm 8026  cc 10146  cz 11589  cuz 11899  TopOnctopon 20937  𝑡clm 21252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-pre-lttri 10222  ax-pre-lttrn 10223
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-po 5187  df-so 5188  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-1st 7334  df-2nd 7335  df-er 7913  df-pm 8028  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-neg 10481  df-z 11590  df-uz 11900  df-top 20921  df-topon 20938  df-lm 21255
This theorem is referenced by:  lmle  23319
  Copyright terms: Public domain W3C validator