Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmclim2 Structured version   Visualization version   GIF version

Theorem lmclim2 33867
Description: A sequence in a metric space converges to a point iff the distance between the point and the elements of the sequence converges to 0. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 5-Jun-2014.)
Hypotheses
Ref Expression
lmclim2.2 (𝜑𝐷 ∈ (Met‘𝑋))
lmclim2.3 (𝜑𝐹:ℕ⟶𝑋)
lmclim2.4 𝐽 = (MetOpen‘𝐷)
lmclim2.5 𝐺 = (𝑥 ∈ ℕ ↦ ((𝐹𝑥)𝐷𝑌))
lmclim2.6 (𝜑𝑌𝑋)
Assertion
Ref Expression
lmclim2 (𝜑 → (𝐹(⇝𝑡𝐽)𝑌𝐺 ⇝ 0))
Distinct variable groups:   𝑥,𝐷   𝑥,𝐹   𝑥,𝐺   𝑥,𝐽   𝑥,𝑋   𝜑,𝑥   𝑥,𝑌

Proof of Theorem lmclim2
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmclim2.4 . . 3 𝐽 = (MetOpen‘𝐷)
2 lmclim2.2 . . . 4 (𝜑𝐷 ∈ (Met‘𝑋))
3 metxmet 22340 . . . 4 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
42, 3syl 17 . . 3 (𝜑𝐷 ∈ (∞Met‘𝑋))
5 nnuz 11916 . . 3 ℕ = (ℤ‘1)
6 1zzd 11600 . . 3 (𝜑 → 1 ∈ ℤ)
7 eqidd 2761 . . 3 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = (𝐹𝑘))
8 lmclim2.3 . . 3 (𝜑𝐹:ℕ⟶𝑋)
91, 4, 5, 6, 7, 8lmmbrf 23260 . 2 (𝜑 → (𝐹(⇝𝑡𝐽)𝑌 ↔ (𝑌𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷𝑌) < 𝑥)))
10 lmclim2.5 . . . . . 6 𝐺 = (𝑥 ∈ ℕ ↦ ((𝐹𝑥)𝐷𝑌))
11 nnex 11218 . . . . . . 7 ℕ ∈ V
1211mptex 6650 . . . . . 6 (𝑥 ∈ ℕ ↦ ((𝐹𝑥)𝐷𝑌)) ∈ V
1310, 12eqeltri 2835 . . . . 5 𝐺 ∈ V
1413a1i 11 . . . 4 (𝜑𝐺 ∈ V)
15 fveq2 6352 . . . . . . 7 (𝑥 = 𝑘 → (𝐹𝑥) = (𝐹𝑘))
1615oveq1d 6828 . . . . . 6 (𝑥 = 𝑘 → ((𝐹𝑥)𝐷𝑌) = ((𝐹𝑘)𝐷𝑌))
17 ovex 6841 . . . . . 6 ((𝐹𝑘)𝐷𝑌) ∈ V
1816, 10, 17fvmpt 6444 . . . . 5 (𝑘 ∈ ℕ → (𝐺𝑘) = ((𝐹𝑘)𝐷𝑌))
1918adantl 473 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) = ((𝐹𝑘)𝐷𝑌))
202adantr 472 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → 𝐷 ∈ (Met‘𝑋))
218ffvelrnda 6522 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ 𝑋)
22 lmclim2.6 . . . . . . 7 (𝜑𝑌𝑋)
2322adantr 472 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → 𝑌𝑋)
24 metcl 22338 . . . . . 6 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋𝑌𝑋) → ((𝐹𝑘)𝐷𝑌) ∈ ℝ)
2520, 21, 23, 24syl3anc 1477 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘)𝐷𝑌) ∈ ℝ)
2625recnd 10260 . . . 4 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘)𝐷𝑌) ∈ ℂ)
275, 6, 14, 19, 26clim0c 14437 . . 3 (𝜑 → (𝐺 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘)𝐷𝑌)) < 𝑥))
28 eluznn 11951 . . . . . . . 8 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
29 metge0 22351 . . . . . . . . . . 11 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋𝑌𝑋) → 0 ≤ ((𝐹𝑘)𝐷𝑌))
3020, 21, 23, 29syl3anc 1477 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 0 ≤ ((𝐹𝑘)𝐷𝑌))
3125, 30absidd 14360 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (abs‘((𝐹𝑘)𝐷𝑌)) = ((𝐹𝑘)𝐷𝑌))
3231breq1d 4814 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((abs‘((𝐹𝑘)𝐷𝑌)) < 𝑥 ↔ ((𝐹𝑘)𝐷𝑌) < 𝑥))
3328, 32sylan2 492 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → ((abs‘((𝐹𝑘)𝐷𝑌)) < 𝑥 ↔ ((𝐹𝑘)𝐷𝑌) < 𝑥))
3433anassrs 683 . . . . . 6 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ((abs‘((𝐹𝑘)𝐷𝑌)) < 𝑥 ↔ ((𝐹𝑘)𝐷𝑌) < 𝑥))
3534ralbidva 3123 . . . . 5 ((𝜑𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘)𝐷𝑌)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷𝑌) < 𝑥))
3635rexbidva 3187 . . . 4 (𝜑 → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘)𝐷𝑌)) < 𝑥 ↔ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷𝑌) < 𝑥))
3736ralbidv 3124 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘)𝐷𝑌)) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷𝑌) < 𝑥))
3822biantrurd 530 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷𝑌) < 𝑥 ↔ (𝑌𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷𝑌) < 𝑥)))
3927, 37, 383bitrrd 295 . 2 (𝜑 → ((𝑌𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷𝑌) < 𝑥) ↔ 𝐺 ⇝ 0))
409, 39bitrd 268 1 (𝜑 → (𝐹(⇝𝑡𝐽)𝑌𝐺 ⇝ 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  wral 3050  wrex 3051  Vcvv 3340   class class class wbr 4804  cmpt 4881  wf 6045  cfv 6049  (class class class)co 6813  cr 10127  0cc0 10128  1c1 10129   < clt 10266  cle 10267  cn 11212  cuz 11879  +crp 12025  abscabs 14173  cli 14414  ∞Metcxmt 19933  Metcme 19934  MetOpencmopn 19938  𝑡clm 21232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-map 8025  df-pm 8026  df-en 8122  df-dom 8123  df-sdom 8124  df-sup 8513  df-inf 8514  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-n0 11485  df-z 11570  df-uz 11880  df-q 11982  df-rp 12026  df-xneg 12139  df-xadd 12140  df-xmul 12141  df-seq 12996  df-exp 13055  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-clim 14418  df-topgen 16306  df-psmet 19940  df-xmet 19941  df-met 19942  df-bl 19943  df-mopn 19944  df-top 20901  df-topon 20918  df-bases 20952  df-lm 21235
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator