Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  llyrest Structured version   Visualization version   GIF version

Theorem llyrest 21461
 Description: An open subspace of a locally 𝐴 space is also locally 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
llyrest ((𝐽 ∈ Locally 𝐴𝐵𝐽) → (𝐽t 𝐵) ∈ Locally 𝐴)

Proof of Theorem llyrest
Dummy variables 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 llytop 21448 . . 3 (𝐽 ∈ Locally 𝐴𝐽 ∈ Top)
2 resttop 21137 . . 3 ((𝐽 ∈ Top ∧ 𝐵𝐽) → (𝐽t 𝐵) ∈ Top)
31, 2sylan 489 . 2 ((𝐽 ∈ Locally 𝐴𝐵𝐽) → (𝐽t 𝐵) ∈ Top)
4 restopn2 21154 . . . . 5 ((𝐽 ∈ Top ∧ 𝐵𝐽) → (𝑥 ∈ (𝐽t 𝐵) ↔ (𝑥𝐽𝑥𝐵)))
51, 4sylan 489 . . . 4 ((𝐽 ∈ Locally 𝐴𝐵𝐽) → (𝑥 ∈ (𝐽t 𝐵) ↔ (𝑥𝐽𝑥𝐵)))
6 simp1l 1216 . . . . . . . . 9 (((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) → 𝐽 ∈ Locally 𝐴)
7 simp2l 1218 . . . . . . . . 9 (((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) → 𝑥𝐽)
8 simp3 1130 . . . . . . . . 9 (((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) → 𝑦𝑥)
9 llyi 21450 . . . . . . . . 9 ((𝐽 ∈ Locally 𝐴𝑥𝐽𝑦𝑥) → ∃𝑣𝐽 (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))
106, 7, 8, 9syl3anc 1463 . . . . . . . 8 (((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) → ∃𝑣𝐽 (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))
11 simprl 811 . . . . . . . . . . . . 13 ((((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ (𝑣𝐽 ∧ (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))) → 𝑣𝐽)
12 simprr1 1249 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ (𝑣𝐽 ∧ (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))) → 𝑣𝑥)
13 simpl2r 1261 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ (𝑣𝐽 ∧ (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))) → 𝑥𝐵)
1412, 13sstrd 3742 . . . . . . . . . . . . 13 ((((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ (𝑣𝐽 ∧ (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))) → 𝑣𝐵)
156, 1syl 17 . . . . . . . . . . . . . . 15 (((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) → 𝐽 ∈ Top)
1615adantr 472 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ (𝑣𝐽 ∧ (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))) → 𝐽 ∈ Top)
17 simpl1r 1257 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ (𝑣𝐽 ∧ (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))) → 𝐵𝐽)
18 restopn2 21154 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ 𝐵𝐽) → (𝑣 ∈ (𝐽t 𝐵) ↔ (𝑣𝐽𝑣𝐵)))
1916, 17, 18syl2anc 696 . . . . . . . . . . . . 13 ((((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ (𝑣𝐽 ∧ (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))) → (𝑣 ∈ (𝐽t 𝐵) ↔ (𝑣𝐽𝑣𝐵)))
2011, 14, 19mpbir2and 995 . . . . . . . . . . . 12 ((((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ (𝑣𝐽 ∧ (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))) → 𝑣 ∈ (𝐽t 𝐵))
21 selpw 4297 . . . . . . . . . . . . 13 (𝑣 ∈ 𝒫 𝑥𝑣𝑥)
2212, 21sylibr 224 . . . . . . . . . . . 12 ((((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ (𝑣𝐽 ∧ (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))) → 𝑣 ∈ 𝒫 𝑥)
2320, 22elind 3929 . . . . . . . . . . 11 ((((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ (𝑣𝐽 ∧ (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))) → 𝑣 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑥))
24 simprr2 1251 . . . . . . . . . . 11 ((((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ (𝑣𝐽 ∧ (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))) → 𝑦𝑣)
25 restabs 21142 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝑣𝐵𝐵𝐽) → ((𝐽t 𝐵) ↾t 𝑣) = (𝐽t 𝑣))
2616, 14, 17, 25syl3anc 1463 . . . . . . . . . . . 12 ((((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ (𝑣𝐽 ∧ (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))) → ((𝐽t 𝐵) ↾t 𝑣) = (𝐽t 𝑣))
27 simprr3 1253 . . . . . . . . . . . 12 ((((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ (𝑣𝐽 ∧ (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))) → (𝐽t 𝑣) ∈ 𝐴)
2826, 27eqeltrd 2827 . . . . . . . . . . 11 ((((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ (𝑣𝐽 ∧ (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))) → ((𝐽t 𝐵) ↾t 𝑣) ∈ 𝐴)
2923, 24, 28jca32 559 . . . . . . . . . 10 ((((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ (𝑣𝐽 ∧ (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))) → (𝑣 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑥) ∧ (𝑦𝑣 ∧ ((𝐽t 𝐵) ↾t 𝑣) ∈ 𝐴)))
3029ex 449 . . . . . . . . 9 (((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) → ((𝑣𝐽 ∧ (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴)) → (𝑣 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑥) ∧ (𝑦𝑣 ∧ ((𝐽t 𝐵) ↾t 𝑣) ∈ 𝐴))))
3130reximdv2 3140 . . . . . . . 8 (((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) → (∃𝑣𝐽 (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴) → ∃𝑣 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑥)(𝑦𝑣 ∧ ((𝐽t 𝐵) ↾t 𝑣) ∈ 𝐴)))
3210, 31mpd 15 . . . . . . 7 (((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) → ∃𝑣 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑥)(𝑦𝑣 ∧ ((𝐽t 𝐵) ↾t 𝑣) ∈ 𝐴))
33323expa 1111 . . . . . 6 ((((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵)) ∧ 𝑦𝑥) → ∃𝑣 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑥)(𝑦𝑣 ∧ ((𝐽t 𝐵) ↾t 𝑣) ∈ 𝐴))
3433ralrimiva 3092 . . . . 5 (((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵)) → ∀𝑦𝑥𝑣 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑥)(𝑦𝑣 ∧ ((𝐽t 𝐵) ↾t 𝑣) ∈ 𝐴))
3534ex 449 . . . 4 ((𝐽 ∈ Locally 𝐴𝐵𝐽) → ((𝑥𝐽𝑥𝐵) → ∀𝑦𝑥𝑣 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑥)(𝑦𝑣 ∧ ((𝐽t 𝐵) ↾t 𝑣) ∈ 𝐴)))
365, 35sylbid 230 . . 3 ((𝐽 ∈ Locally 𝐴𝐵𝐽) → (𝑥 ∈ (𝐽t 𝐵) → ∀𝑦𝑥𝑣 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑥)(𝑦𝑣 ∧ ((𝐽t 𝐵) ↾t 𝑣) ∈ 𝐴)))
3736ralrimiv 3091 . 2 ((𝐽 ∈ Locally 𝐴𝐵𝐽) → ∀𝑥 ∈ (𝐽t 𝐵)∀𝑦𝑥𝑣 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑥)(𝑦𝑣 ∧ ((𝐽t 𝐵) ↾t 𝑣) ∈ 𝐴))
38 islly 21444 . 2 ((𝐽t 𝐵) ∈ Locally 𝐴 ↔ ((𝐽t 𝐵) ∈ Top ∧ ∀𝑥 ∈ (𝐽t 𝐵)∀𝑦𝑥𝑣 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑥)(𝑦𝑣 ∧ ((𝐽t 𝐵) ↾t 𝑣) ∈ 𝐴)))
393, 37, 38sylanbrc 701 1 ((𝐽 ∈ Locally 𝐴𝐵𝐽) → (𝐽t 𝐵) ∈ Locally 𝐴)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1072   = wceq 1620   ∈ wcel 2127  ∀wral 3038  ∃wrex 3039   ∩ cin 3702   ⊆ wss 3703  𝒫 cpw 4290  (class class class)co 6801   ↾t crest 16254  Topctop 20871  Locally clly 21440 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-ral 3043  df-rex 3044  df-reu 3045  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-int 4616  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-om 7219  df-1st 7321  df-2nd 7322  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-oadd 7721  df-er 7899  df-en 8110  df-fin 8113  df-fi 8470  df-rest 16256  df-topgen 16277  df-top 20872  df-topon 20889  df-bases 20923  df-lly 21442 This theorem is referenced by:  loclly  21463  llyidm  21464
 Copyright terms: Public domain W3C validator