Step | Hyp | Ref
| Expression |
1 | | llytop 21323 |
. . . 4
⊢ (𝑗 ∈ Locally Locally 𝐴 → 𝑗 ∈ Top) |
2 | | llyi 21325 |
. . . . . . 7
⊢ ((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) → ∃𝑢 ∈ 𝑗 (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴)) |
3 | | simprr3 1131 |
. . . . . . . . 9
⊢ (((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) → (𝑗 ↾t 𝑢) ∈ Locally 𝐴) |
4 | | simprl 809 |
. . . . . . . . . 10
⊢ (((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) → 𝑢 ∈ 𝑗) |
5 | | ssid 3657 |
. . . . . . . . . . 11
⊢ 𝑢 ⊆ 𝑢 |
6 | 5 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) → 𝑢 ⊆ 𝑢) |
7 | 1 | 3ad2ant1 1102 |
. . . . . . . . . . . 12
⊢ ((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) → 𝑗 ∈ Top) |
8 | 7 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) → 𝑗 ∈ Top) |
9 | | restopn2 21029 |
. . . . . . . . . . 11
⊢ ((𝑗 ∈ Top ∧ 𝑢 ∈ 𝑗) → (𝑢 ∈ (𝑗 ↾t 𝑢) ↔ (𝑢 ∈ 𝑗 ∧ 𝑢 ⊆ 𝑢))) |
10 | 8, 4, 9 | syl2anc 694 |
. . . . . . . . . 10
⊢ (((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) → (𝑢 ∈ (𝑗 ↾t 𝑢) ↔ (𝑢 ∈ 𝑗 ∧ 𝑢 ⊆ 𝑢))) |
11 | 4, 6, 10 | mpbir2and 977 |
. . . . . . . . 9
⊢ (((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) → 𝑢 ∈ (𝑗 ↾t 𝑢)) |
12 | | simprr2 1130 |
. . . . . . . . 9
⊢ (((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) → 𝑦 ∈ 𝑢) |
13 | | llyi 21325 |
. . . . . . . . 9
⊢ (((𝑗 ↾t 𝑢) ∈ Locally 𝐴 ∧ 𝑢 ∈ (𝑗 ↾t 𝑢) ∧ 𝑦 ∈ 𝑢) → ∃𝑣 ∈ (𝑗 ↾t 𝑢)(𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴)) |
14 | 3, 11, 12, 13 | syl3anc 1366 |
. . . . . . . 8
⊢ (((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) → ∃𝑣 ∈ (𝑗 ↾t 𝑢)(𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴)) |
15 | | restopn2 21029 |
. . . . . . . . . . . 12
⊢ ((𝑗 ∈ Top ∧ 𝑢 ∈ 𝑗) → (𝑣 ∈ (𝑗 ↾t 𝑢) ↔ (𝑣 ∈ 𝑗 ∧ 𝑣 ⊆ 𝑢))) |
16 | 8, 4, 15 | syl2anc 694 |
. . . . . . . . . . 11
⊢ (((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) → (𝑣 ∈ (𝑗 ↾t 𝑢) ↔ (𝑣 ∈ 𝑗 ∧ 𝑣 ⊆ 𝑢))) |
17 | | simpl 472 |
. . . . . . . . . . 11
⊢ ((𝑣 ∈ 𝑗 ∧ 𝑣 ⊆ 𝑢) → 𝑣 ∈ 𝑗) |
18 | 16, 17 | syl6bi 243 |
. . . . . . . . . 10
⊢ (((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) → (𝑣 ∈ (𝑗 ↾t 𝑢) → 𝑣 ∈ 𝑗)) |
19 | | simprl 809 |
. . . . . . . . . . . . 13
⊢ ((((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣 ∈ 𝑗 ∧ (𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣 ∈ 𝑗) |
20 | | simprr1 1129 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣 ∈ 𝑗 ∧ (𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣 ⊆ 𝑢) |
21 | | simprr1 1129 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) → 𝑢 ⊆ 𝑥) |
22 | 21 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣 ∈ 𝑗 ∧ (𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑢 ⊆ 𝑥) |
23 | 20, 22 | sstrd 3646 |
. . . . . . . . . . . . . 14
⊢ ((((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣 ∈ 𝑗 ∧ (𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣 ⊆ 𝑥) |
24 | | selpw 4198 |
. . . . . . . . . . . . . 14
⊢ (𝑣 ∈ 𝒫 𝑥 ↔ 𝑣 ⊆ 𝑥) |
25 | 23, 24 | sylibr 224 |
. . . . . . . . . . . . 13
⊢ ((((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣 ∈ 𝑗 ∧ (𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣 ∈ 𝒫 𝑥) |
26 | 19, 25 | elind 3831 |
. . . . . . . . . . . 12
⊢ ((((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣 ∈ 𝑗 ∧ (𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣 ∈ (𝑗 ∩ 𝒫 𝑥)) |
27 | | simprr2 1130 |
. . . . . . . . . . . 12
⊢ ((((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣 ∈ 𝑗 ∧ (𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑦 ∈ 𝑣) |
28 | 8 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣 ∈ 𝑗 ∧ (𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑗 ∈ Top) |
29 | | simplrl 817 |
. . . . . . . . . . . . . 14
⊢ ((((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣 ∈ 𝑗 ∧ (𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑢 ∈ 𝑗) |
30 | | restabs 21017 |
. . . . . . . . . . . . . 14
⊢ ((𝑗 ∈ Top ∧ 𝑣 ⊆ 𝑢 ∧ 𝑢 ∈ 𝑗) → ((𝑗 ↾t 𝑢) ↾t 𝑣) = (𝑗 ↾t 𝑣)) |
31 | 28, 20, 29, 30 | syl3anc 1366 |
. . . . . . . . . . . . 13
⊢ ((((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣 ∈ 𝑗 ∧ (𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → ((𝑗 ↾t 𝑢) ↾t 𝑣) = (𝑗 ↾t 𝑣)) |
32 | | simprr3 1131 |
. . . . . . . . . . . . 13
⊢ ((((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣 ∈ 𝑗 ∧ (𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴) |
33 | 31, 32 | eqeltrrd 2731 |
. . . . . . . . . . . 12
⊢ ((((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣 ∈ 𝑗 ∧ (𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → (𝑗 ↾t 𝑣) ∈ 𝐴) |
34 | 26, 27, 33 | jca32 557 |
. . . . . . . . . . 11
⊢ ((((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣 ∈ 𝑗 ∧ (𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → (𝑣 ∈ (𝑗 ∩ 𝒫 𝑥) ∧ (𝑦 ∈ 𝑣 ∧ (𝑗 ↾t 𝑣) ∈ 𝐴))) |
35 | 34 | ex 449 |
. . . . . . . . . 10
⊢ (((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) → ((𝑣 ∈ 𝑗 ∧ (𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴)) → (𝑣 ∈ (𝑗 ∩ 𝒫 𝑥) ∧ (𝑦 ∈ 𝑣 ∧ (𝑗 ↾t 𝑣) ∈ 𝐴)))) |
36 | 18, 35 | syland 497 |
. . . . . . . . 9
⊢ (((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) → ((𝑣 ∈ (𝑗 ↾t 𝑢) ∧ (𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴)) → (𝑣 ∈ (𝑗 ∩ 𝒫 𝑥) ∧ (𝑦 ∈ 𝑣 ∧ (𝑗 ↾t 𝑣) ∈ 𝐴)))) |
37 | 36 | reximdv2 3043 |
. . . . . . . 8
⊢ (((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) → (∃𝑣 ∈ (𝑗 ↾t 𝑢)(𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴) → ∃𝑣 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑣 ∧ (𝑗 ↾t 𝑣) ∈ 𝐴))) |
38 | 14, 37 | mpd 15 |
. . . . . . 7
⊢ (((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) → ∃𝑣 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑣 ∧ (𝑗 ↾t 𝑣) ∈ 𝐴)) |
39 | 2, 38 | rexlimddv 3064 |
. . . . . 6
⊢ ((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) → ∃𝑣 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑣 ∧ (𝑗 ↾t 𝑣) ∈ 𝐴)) |
40 | 39 | 3expb 1285 |
. . . . 5
⊢ ((𝑗 ∈ Locally Locally 𝐴 ∧ (𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥)) → ∃𝑣 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑣 ∧ (𝑗 ↾t 𝑣) ∈ 𝐴)) |
41 | 40 | ralrimivva 3000 |
. . . 4
⊢ (𝑗 ∈ Locally Locally 𝐴 → ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑣 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑣 ∧ (𝑗 ↾t 𝑣) ∈ 𝐴)) |
42 | | islly 21319 |
. . . 4
⊢ (𝑗 ∈ Locally 𝐴 ↔ (𝑗 ∈ Top ∧ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑣 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑣 ∧ (𝑗 ↾t 𝑣) ∈ 𝐴))) |
43 | 1, 41, 42 | sylanbrc 699 |
. . 3
⊢ (𝑗 ∈ Locally Locally 𝐴 → 𝑗 ∈ Locally 𝐴) |
44 | 43 | ssriv 3640 |
. 2
⊢ Locally
Locally 𝐴 ⊆ Locally
𝐴 |
45 | | llyrest 21336 |
. . . . 5
⊢ ((𝑗 ∈ Locally 𝐴 ∧ 𝑥 ∈ 𝑗) → (𝑗 ↾t 𝑥) ∈ Locally 𝐴) |
46 | 45 | adantl 481 |
. . . 4
⊢
((⊤ ∧ (𝑗
∈ Locally 𝐴 ∧
𝑥 ∈ 𝑗)) → (𝑗 ↾t 𝑥) ∈ Locally 𝐴) |
47 | | llytop 21323 |
. . . . . 6
⊢ (𝑗 ∈ Locally 𝐴 → 𝑗 ∈ Top) |
48 | 47 | ssriv 3640 |
. . . . 5
⊢ Locally
𝐴 ⊆
Top |
49 | 48 | a1i 11 |
. . . 4
⊢ (⊤
→ Locally 𝐴 ⊆
Top) |
50 | 46, 49 | restlly 21334 |
. . 3
⊢ (⊤
→ Locally 𝐴 ⊆
Locally Locally 𝐴) |
51 | 50 | trud 1533 |
. 2
⊢ Locally
𝐴 ⊆ Locally Locally
𝐴 |
52 | 44, 51 | eqssi 3652 |
1
⊢ Locally
Locally 𝐴 = Locally 𝐴 |