![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > llnneat | Structured version Visualization version GIF version |
Description: A lattice line is not an atom. (Contributed by NM, 19-Jun-2012.) |
Ref | Expression |
---|---|
llnneat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
llnneat.n | ⊢ 𝑁 = (LLines‘𝐾) |
Ref | Expression |
---|---|
llnneat | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁) → ¬ 𝑋 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hllat 35172 | . . 3 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
2 | eqid 2761 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
3 | llnneat.n | . . . 4 ⊢ 𝑁 = (LLines‘𝐾) | |
4 | 2, 3 | llnbase 35317 | . . 3 ⊢ (𝑋 ∈ 𝑁 → 𝑋 ∈ (Base‘𝐾)) |
5 | eqid 2761 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
6 | 2, 5 | latref 17275 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾)) → 𝑋(le‘𝐾)𝑋) |
7 | 1, 4, 6 | syl2an 495 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁) → 𝑋(le‘𝐾)𝑋) |
8 | llnneat.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
9 | 5, 8, 3 | llnnleat 35321 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑋 ∈ 𝐴) → ¬ 𝑋(le‘𝐾)𝑋) |
10 | 9 | 3expia 1115 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁) → (𝑋 ∈ 𝐴 → ¬ 𝑋(le‘𝐾)𝑋)) |
11 | 7, 10 | mt2d 131 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁) → ¬ 𝑋 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2140 class class class wbr 4805 ‘cfv 6050 Basecbs 16080 lecple 16171 Latclat 17267 Atomscatm 35072 HLchlt 35159 LLinesclln 35299 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-rep 4924 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-ral 3056 df-rex 3057 df-reu 3058 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-op 4329 df-uni 4590 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-id 5175 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-riota 6776 df-ov 6818 df-preset 17150 df-poset 17168 df-plt 17180 df-glb 17197 df-p0 17261 df-lat 17268 df-covers 35075 df-ats 35076 df-atl 35107 df-cvlat 35131 df-hlat 35160 df-llines 35306 |
This theorem is referenced by: 2atneat 35323 islln2a 35325 cdleme22b 36150 cdlemh 36626 |
Copyright terms: Public domain | W3C validator |