Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llnmlplnN Structured version   Visualization version   GIF version

Theorem llnmlplnN 35143
Description: The intersection of a line with a plane not containing it is an atom. (Contributed by NM, 29-Jun-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
llnmlpln.l = (le‘𝐾)
llnmlpln.m = (meet‘𝐾)
llnmlpln.z 0 = (0.‘𝐾)
llnmlpln.a 𝐴 = (Atoms‘𝐾)
llnmlpln.n 𝑁 = (LLines‘𝐾)
llnmlpln.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
llnmlplnN (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → (𝑋 𝑌) ∈ 𝐴)

Proof of Theorem llnmlplnN
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 simprl 809 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → ¬ 𝑋 𝑌)
2 simp11 1111 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) → 𝐾 ∈ HL)
3 hllat 34968 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ Lat)
42, 3syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) → 𝐾 ∈ Lat)
5 simp12 1112 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) → 𝑋𝑁)
6 eqid 2651 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
7 llnmlpln.n . . . . . . . . 9 𝑁 = (LLines‘𝐾)
86, 7llnbase 35113 . . . . . . . 8 (𝑋𝑁𝑋 ∈ (Base‘𝐾))
95, 8syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) → 𝑋 ∈ (Base‘𝐾))
10 simp13 1113 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) → 𝑌𝑃)
11 llnmlpln.p . . . . . . . . 9 𝑃 = (LPlanes‘𝐾)
126, 11lplnbase 35138 . . . . . . . 8 (𝑌𝑃𝑌 ∈ (Base‘𝐾))
1310, 12syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) → 𝑌 ∈ (Base‘𝐾))
14 llnmlpln.m . . . . . . . 8 = (meet‘𝐾)
156, 14latmcl 17099 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 𝑌) ∈ (Base‘𝐾))
164, 9, 13, 15syl3anc 1366 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) → (𝑋 𝑌) ∈ (Base‘𝐾))
17 simp2r 1108 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) → (𝑋 𝑌) ≠ 0 )
18 simp3 1083 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) → ¬ (𝑋 𝑌) ∈ 𝐴)
19 llnmlpln.l . . . . . . 7 = (le‘𝐾)
20 llnmlpln.z . . . . . . 7 0 = (0.‘𝐾)
21 llnmlpln.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
226, 19, 20, 21, 7llnle 35122 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋 𝑌) ∈ (Base‘𝐾)) ∧ ((𝑋 𝑌) ≠ 0 ∧ ¬ (𝑋 𝑌) ∈ 𝐴)) → ∃𝑢𝑁 𝑢 (𝑋 𝑌))
232, 16, 17, 18, 22syl22anc 1367 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) → ∃𝑢𝑁 𝑢 (𝑋 𝑌))
244adantr 480 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑢𝑁𝑢 (𝑋 𝑌))) → 𝐾 ∈ Lat)
2516adantr 480 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑢𝑁𝑢 (𝑋 𝑌))) → (𝑋 𝑌) ∈ (Base‘𝐾))
269adantr 480 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑢𝑁𝑢 (𝑋 𝑌))) → 𝑋 ∈ (Base‘𝐾))
276, 19, 14latmle1 17123 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 𝑌) 𝑋)
284, 9, 13, 27syl3anc 1366 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) → (𝑋 𝑌) 𝑋)
2928adantr 480 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑢𝑁𝑢 (𝑋 𝑌))) → (𝑋 𝑌) 𝑋)
306, 7llnbase 35113 . . . . . . . . . 10 (𝑢𝑁𝑢 ∈ (Base‘𝐾))
3130ad2antrl 764 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑢𝑁𝑢 (𝑋 𝑌))) → 𝑢 ∈ (Base‘𝐾))
32 simprr 811 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑢𝑁𝑢 (𝑋 𝑌))) → 𝑢 (𝑋 𝑌))
336, 19, 24, 31, 25, 26, 32, 29lattrd 17105 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑢𝑁𝑢 (𝑋 𝑌))) → 𝑢 𝑋)
34 simpl11 1156 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑢𝑁𝑢 (𝑋 𝑌))) → 𝐾 ∈ HL)
35 simprl 809 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑢𝑁𝑢 (𝑋 𝑌))) → 𝑢𝑁)
36 simpl12 1157 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑢𝑁𝑢 (𝑋 𝑌))) → 𝑋𝑁)
3719, 7llncmp 35126 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑢𝑁𝑋𝑁) → (𝑢 𝑋𝑢 = 𝑋))
3834, 35, 36, 37syl3anc 1366 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑢𝑁𝑢 (𝑋 𝑌))) → (𝑢 𝑋𝑢 = 𝑋))
3933, 38mpbid 222 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑢𝑁𝑢 (𝑋 𝑌))) → 𝑢 = 𝑋)
4039, 32eqbrtrrd 4709 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑢𝑁𝑢 (𝑋 𝑌))) → 𝑋 (𝑋 𝑌))
416, 19, 24, 25, 26, 29, 40latasymd 17104 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑢𝑁𝑢 (𝑋 𝑌))) → (𝑋 𝑌) = 𝑋)
4223, 41rexlimddv 3064 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) → (𝑋 𝑌) = 𝑋)
436, 19, 14latleeqm1 17126 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 𝑌 ↔ (𝑋 𝑌) = 𝑋))
444, 9, 13, 43syl3anc 1366 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) → (𝑋 𝑌 ↔ (𝑋 𝑌) = 𝑋))
4542, 44mpbird 247 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 ) ∧ ¬ (𝑋 𝑌) ∈ 𝐴) → 𝑋 𝑌)
46453expia 1286 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → (¬ (𝑋 𝑌) ∈ 𝐴𝑋 𝑌))
471, 46mt3d 140 1 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → (𝑋 𝑌) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wrex 2942   class class class wbr 4685  cfv 5926  (class class class)co 6690  Basecbs 15904  lecple 15995  meetcmee 16992  0.cp0 17084  Latclat 17092  Atomscatm 34868  HLchlt 34955  LLinesclln 35095  LPlanesclpl 35096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-preset 16975  df-poset 16993  df-plt 17005  df-lub 17021  df-glb 17022  df-join 17023  df-meet 17024  df-p0 17086  df-lat 17093  df-clat 17155  df-oposet 34781  df-ol 34783  df-oml 34784  df-covers 34871  df-ats 34872  df-atl 34903  df-cvlat 34927  df-hlat 34956  df-llines 35102  df-lplanes 35103
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator