![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lkrsc | Structured version Visualization version GIF version |
Description: The kernel of a nonzero scalar product of a functional equals the kernel of the functional. (Contributed by NM, 9-Oct-2014.) |
Ref | Expression |
---|---|
lkrsc.v | ⊢ 𝑉 = (Base‘𝑊) |
lkrsc.d | ⊢ 𝐷 = (Scalar‘𝑊) |
lkrsc.k | ⊢ 𝐾 = (Base‘𝐷) |
lkrsc.t | ⊢ · = (.r‘𝐷) |
lkrsc.f | ⊢ 𝐹 = (LFnl‘𝑊) |
lkrsc.l | ⊢ 𝐿 = (LKer‘𝑊) |
lkrsc.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lkrsc.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
lkrsc.r | ⊢ (𝜑 → 𝑅 ∈ 𝐾) |
lkrsc.o | ⊢ 0 = (0g‘𝐷) |
lkrsc.e | ⊢ (𝜑 → 𝑅 ≠ 0 ) |
Ref | Expression |
---|---|
lkrsc | ⊢ (𝜑 → (𝐿‘(𝐺 ∘𝑓 · (𝑉 × {𝑅}))) = (𝐿‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lkrsc.v | . . . . . . . . 9 ⊢ 𝑉 = (Base‘𝑊) | |
2 | fvex 6342 | . . . . . . . . 9 ⊢ (Base‘𝑊) ∈ V | |
3 | 1, 2 | eqeltri 2845 | . . . . . . . 8 ⊢ 𝑉 ∈ V |
4 | 3 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 𝑉 ∈ V) |
5 | lkrsc.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ 𝐾) | |
6 | lkrsc.w | . . . . . . . . 9 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
7 | lkrsc.g | . . . . . . . . 9 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
8 | lkrsc.d | . . . . . . . . . 10 ⊢ 𝐷 = (Scalar‘𝑊) | |
9 | lkrsc.k | . . . . . . . . . 10 ⊢ 𝐾 = (Base‘𝐷) | |
10 | lkrsc.f | . . . . . . . . . 10 ⊢ 𝐹 = (LFnl‘𝑊) | |
11 | 8, 9, 1, 10 | lflf 34865 | . . . . . . . . 9 ⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶𝐾) |
12 | 6, 7, 11 | syl2anc 565 | . . . . . . . 8 ⊢ (𝜑 → 𝐺:𝑉⟶𝐾) |
13 | ffn 6185 | . . . . . . . 8 ⊢ (𝐺:𝑉⟶𝐾 → 𝐺 Fn 𝑉) | |
14 | 12, 13 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐺 Fn 𝑉) |
15 | eqidd 2771 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (𝐺‘𝑣) = (𝐺‘𝑣)) | |
16 | 4, 5, 14, 15 | ofc2 7067 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → ((𝐺 ∘𝑓 · (𝑉 × {𝑅}))‘𝑣) = ((𝐺‘𝑣) · 𝑅)) |
17 | 16 | eqeq1d 2772 | . . . . 5 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (((𝐺 ∘𝑓 · (𝑉 × {𝑅}))‘𝑣) = 0 ↔ ((𝐺‘𝑣) · 𝑅) = 0 )) |
18 | lkrsc.o | . . . . . 6 ⊢ 0 = (0g‘𝐷) | |
19 | lkrsc.t | . . . . . 6 ⊢ · = (.r‘𝐷) | |
20 | 8 | lvecdrng 19317 | . . . . . . . 8 ⊢ (𝑊 ∈ LVec → 𝐷 ∈ DivRing) |
21 | 6, 20 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ DivRing) |
22 | 21 | adantr 466 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → 𝐷 ∈ DivRing) |
23 | 6 | adantr 466 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → 𝑊 ∈ LVec) |
24 | 7 | adantr 466 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → 𝐺 ∈ 𝐹) |
25 | simpr 471 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → 𝑣 ∈ 𝑉) | |
26 | 8, 9, 1, 10 | lflcl 34866 | . . . . . . 7 ⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝑣 ∈ 𝑉) → (𝐺‘𝑣) ∈ 𝐾) |
27 | 23, 24, 25, 26 | syl3anc 1475 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (𝐺‘𝑣) ∈ 𝐾) |
28 | 5 | adantr 466 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → 𝑅 ∈ 𝐾) |
29 | lkrsc.e | . . . . . . 7 ⊢ (𝜑 → 𝑅 ≠ 0 ) | |
30 | 29 | adantr 466 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → 𝑅 ≠ 0 ) |
31 | 9, 18, 19, 22, 27, 28, 30 | drngmuleq0 18979 | . . . . 5 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (((𝐺‘𝑣) · 𝑅) = 0 ↔ (𝐺‘𝑣) = 0 )) |
32 | 17, 31 | bitrd 268 | . . . 4 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (((𝐺 ∘𝑓 · (𝑉 × {𝑅}))‘𝑣) = 0 ↔ (𝐺‘𝑣) = 0 )) |
33 | 32 | pm5.32da 560 | . . 3 ⊢ (𝜑 → ((𝑣 ∈ 𝑉 ∧ ((𝐺 ∘𝑓 · (𝑉 × {𝑅}))‘𝑣) = 0 ) ↔ (𝑣 ∈ 𝑉 ∧ (𝐺‘𝑣) = 0 ))) |
34 | lveclmod 19318 | . . . . . 6 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
35 | 6, 34 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) |
36 | 1, 8, 9, 19, 10, 35, 7, 5 | lflvscl 34879 | . . . 4 ⊢ (𝜑 → (𝐺 ∘𝑓 · (𝑉 × {𝑅})) ∈ 𝐹) |
37 | lkrsc.l | . . . . 5 ⊢ 𝐿 = (LKer‘𝑊) | |
38 | 1, 8, 18, 10, 37 | ellkr 34891 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ (𝐺 ∘𝑓 · (𝑉 × {𝑅})) ∈ 𝐹) → (𝑣 ∈ (𝐿‘(𝐺 ∘𝑓 · (𝑉 × {𝑅}))) ↔ (𝑣 ∈ 𝑉 ∧ ((𝐺 ∘𝑓 · (𝑉 × {𝑅}))‘𝑣) = 0 ))) |
39 | 6, 36, 38 | syl2anc 565 | . . 3 ⊢ (𝜑 → (𝑣 ∈ (𝐿‘(𝐺 ∘𝑓 · (𝑉 × {𝑅}))) ↔ (𝑣 ∈ 𝑉 ∧ ((𝐺 ∘𝑓 · (𝑉 × {𝑅}))‘𝑣) = 0 ))) |
40 | 1, 8, 18, 10, 37 | ellkr 34891 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹) → (𝑣 ∈ (𝐿‘𝐺) ↔ (𝑣 ∈ 𝑉 ∧ (𝐺‘𝑣) = 0 ))) |
41 | 6, 7, 40 | syl2anc 565 | . . 3 ⊢ (𝜑 → (𝑣 ∈ (𝐿‘𝐺) ↔ (𝑣 ∈ 𝑉 ∧ (𝐺‘𝑣) = 0 ))) |
42 | 33, 39, 41 | 3bitr4d 300 | . 2 ⊢ (𝜑 → (𝑣 ∈ (𝐿‘(𝐺 ∘𝑓 · (𝑉 × {𝑅}))) ↔ 𝑣 ∈ (𝐿‘𝐺))) |
43 | 42 | eqrdv 2768 | 1 ⊢ (𝜑 → (𝐿‘(𝐺 ∘𝑓 · (𝑉 × {𝑅}))) = (𝐿‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1630 ∈ wcel 2144 ≠ wne 2942 Vcvv 3349 {csn 4314 × cxp 5247 Fn wfn 6026 ⟶wf 6027 ‘cfv 6031 (class class class)co 6792 ∘𝑓 cof 7041 Basecbs 16063 .rcmulr 16149 Scalarcsca 16151 0gc0g 16307 DivRingcdr 18956 LModclmod 19072 LVecclvec 19314 LFnlclfn 34859 LKerclk 34887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-of 7043 df-om 7212 df-tpos 7503 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-er 7895 df-map 8010 df-en 8109 df-dom 8110 df-sdom 8111 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-nn 11222 df-2 11280 df-3 11281 df-ndx 16066 df-slot 16067 df-base 16069 df-sets 16070 df-ress 16071 df-plusg 16161 df-mulr 16162 df-0g 16309 df-mgm 17449 df-sgrp 17491 df-mnd 17502 df-grp 17632 df-minusg 17633 df-mgp 18697 df-ur 18709 df-ring 18756 df-oppr 18830 df-dvdsr 18848 df-unit 18849 df-invr 18879 df-drng 18958 df-lmod 19074 df-lvec 19315 df-lfl 34860 df-lkr 34888 |
This theorem is referenced by: lkrscss 34900 ldualkrsc 34969 |
Copyright terms: Public domain | W3C validator |