![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lkrlsp3 | Structured version Visualization version GIF version |
Description: The subspace sum of a kernel and the span of a vector not in the kernel is the whole vector space. (Contributed by NM, 29-Jun-2014.) |
Ref | Expression |
---|---|
lkrlsp3.v | ⊢ 𝑉 = (Base‘𝑊) |
lkrlsp3.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lkrlsp3.f | ⊢ 𝐹 = (LFnl‘𝑊) |
lkrlsp3.k | ⊢ 𝐾 = (LKer‘𝑊) |
Ref | Expression |
---|---|
lkrlsp3 | ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → (𝑁‘((𝐾‘𝐺) ∪ {𝑋})) = 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lveclmod 19319 | . . . . . . 7 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
2 | 1 | 3ad2ant1 1127 | . . . . . 6 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → 𝑊 ∈ LMod) |
3 | simp2r 1242 | . . . . . . 7 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → 𝐺 ∈ 𝐹) | |
4 | lkrlsp3.f | . . . . . . . 8 ⊢ 𝐹 = (LFnl‘𝑊) | |
5 | lkrlsp3.k | . . . . . . . 8 ⊢ 𝐾 = (LKer‘𝑊) | |
6 | eqid 2771 | . . . . . . . 8 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
7 | 4, 5, 6 | lkrlss 34904 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → (𝐾‘𝐺) ∈ (LSubSp‘𝑊)) |
8 | 2, 3, 7 | syl2anc 573 | . . . . . 6 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → (𝐾‘𝐺) ∈ (LSubSp‘𝑊)) |
9 | lkrlsp3.n | . . . . . . 7 ⊢ 𝑁 = (LSpan‘𝑊) | |
10 | 6, 9 | lspid 19195 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ (𝐾‘𝐺) ∈ (LSubSp‘𝑊)) → (𝑁‘(𝐾‘𝐺)) = (𝐾‘𝐺)) |
11 | 2, 8, 10 | syl2anc 573 | . . . . 5 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → (𝑁‘(𝐾‘𝐺)) = (𝐾‘𝐺)) |
12 | 11 | uneq1d 3917 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → ((𝑁‘(𝐾‘𝐺)) ∪ (𝑁‘{𝑋})) = ((𝐾‘𝐺) ∪ (𝑁‘{𝑋}))) |
13 | 12 | fveq2d 6337 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → (𝑁‘((𝑁‘(𝐾‘𝐺)) ∪ (𝑁‘{𝑋}))) = (𝑁‘((𝐾‘𝐺) ∪ (𝑁‘{𝑋})))) |
14 | lkrlsp3.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
15 | 14, 4, 5, 2, 3 | lkrssv 34905 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → (𝐾‘𝐺) ⊆ 𝑉) |
16 | simp2l 1241 | . . . . 5 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → 𝑋 ∈ 𝑉) | |
17 | 16 | snssd 4476 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → {𝑋} ⊆ 𝑉) |
18 | 14, 9 | lspun 19200 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ (𝐾‘𝐺) ⊆ 𝑉 ∧ {𝑋} ⊆ 𝑉) → (𝑁‘((𝐾‘𝐺) ∪ {𝑋})) = (𝑁‘((𝑁‘(𝐾‘𝐺)) ∪ (𝑁‘{𝑋})))) |
19 | 2, 15, 17, 18 | syl3anc 1476 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → (𝑁‘((𝐾‘𝐺) ∪ {𝑋})) = (𝑁‘((𝑁‘(𝐾‘𝐺)) ∪ (𝑁‘{𝑋})))) |
20 | 14, 6, 9 | lspsncl 19190 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) |
21 | 2, 16, 20 | syl2anc 573 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) |
22 | eqid 2771 | . . . . 5 ⊢ (LSSum‘𝑊) = (LSSum‘𝑊) | |
23 | 6, 9, 22 | lsmsp 19299 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ (𝐾‘𝐺) ∈ (LSubSp‘𝑊) ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) → ((𝐾‘𝐺)(LSSum‘𝑊)(𝑁‘{𝑋})) = (𝑁‘((𝐾‘𝐺) ∪ (𝑁‘{𝑋})))) |
24 | 2, 8, 21, 23 | syl3anc 1476 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → ((𝐾‘𝐺)(LSSum‘𝑊)(𝑁‘{𝑋})) = (𝑁‘((𝐾‘𝐺) ∪ (𝑁‘{𝑋})))) |
25 | 13, 19, 24 | 3eqtr4d 2815 | . 2 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → (𝑁‘((𝐾‘𝐺) ∪ {𝑋})) = ((𝐾‘𝐺)(LSSum‘𝑊)(𝑁‘{𝑋}))) |
26 | 14, 9, 22, 4, 5 | lkrlsp2 34912 | . 2 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → ((𝐾‘𝐺)(LSSum‘𝑊)(𝑁‘{𝑋})) = 𝑉) |
27 | 25, 26 | eqtrd 2805 | 1 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → (𝑁‘((𝐾‘𝐺) ∪ {𝑋})) = 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 382 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 ∪ cun 3721 ⊆ wss 3723 {csn 4317 ‘cfv 6030 (class class class)co 6796 Basecbs 16064 LSSumclsm 18256 LModclmod 19073 LSubSpclss 19142 LSpanclspn 19184 LVecclvec 19315 LFnlclfn 34866 LKerclk 34894 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-int 4613 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-om 7217 df-1st 7319 df-2nd 7320 df-tpos 7508 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-er 7900 df-map 8015 df-en 8114 df-dom 8115 df-sdom 8116 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-nn 11227 df-2 11285 df-3 11286 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-ress 16072 df-plusg 16162 df-mulr 16163 df-0g 16310 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-submnd 17544 df-grp 17633 df-minusg 17634 df-sbg 17635 df-subg 17799 df-cntz 17957 df-lsm 18258 df-cmn 18402 df-abl 18403 df-mgp 18698 df-ur 18710 df-ring 18757 df-oppr 18831 df-dvdsr 18849 df-unit 18850 df-invr 18880 df-drng 18959 df-lmod 19075 df-lss 19143 df-lsp 19185 df-lvec 19316 df-lfl 34867 df-lkr 34895 |
This theorem is referenced by: lkrshp 34914 |
Copyright terms: Public domain | W3C validator |