![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > linply1 | Structured version Visualization version GIF version |
Description: A term of the form 𝑥 − 𝐶 is a (univariate) polynomial, also called "linear polynomial". (Part of ply1remlem 24141). (Contributed by AV, 3-Jul-2019.) |
Ref | Expression |
---|---|
linply1.p | ⊢ 𝑃 = (Poly1‘𝑅) |
linply1.b | ⊢ 𝐵 = (Base‘𝑃) |
linply1.k | ⊢ 𝐾 = (Base‘𝑅) |
linply1.x | ⊢ 𝑋 = (var1‘𝑅) |
linply1.m | ⊢ − = (-g‘𝑃) |
linply1.a | ⊢ 𝐴 = (algSc‘𝑃) |
linply1.g | ⊢ 𝐺 = (𝑋 − (𝐴‘𝐶)) |
linply1.c | ⊢ (𝜑 → 𝐶 ∈ 𝐾) |
linply1.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
Ref | Expression |
---|---|
linply1 | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | linply1.g | . 2 ⊢ 𝐺 = (𝑋 − (𝐴‘𝐶)) | |
2 | linply1.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
3 | linply1.p | . . . . 5 ⊢ 𝑃 = (Poly1‘𝑅) | |
4 | 3 | ply1ring 19832 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
5 | ringgrp 18759 | . . . 4 ⊢ (𝑃 ∈ Ring → 𝑃 ∈ Grp) | |
6 | 2, 4, 5 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝑃 ∈ Grp) |
7 | linply1.x | . . . . 5 ⊢ 𝑋 = (var1‘𝑅) | |
8 | linply1.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑃) | |
9 | 7, 3, 8 | vr1cl 19801 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑋 ∈ 𝐵) |
10 | 2, 9 | syl 17 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
11 | linply1.a | . . . . . 6 ⊢ 𝐴 = (algSc‘𝑃) | |
12 | linply1.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝑅) | |
13 | 3, 11, 12, 8 | ply1sclf 19869 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝐴:𝐾⟶𝐵) |
14 | 2, 13 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐴:𝐾⟶𝐵) |
15 | linply1.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝐾) | |
16 | 14, 15 | ffvelrnd 6503 | . . 3 ⊢ (𝜑 → (𝐴‘𝐶) ∈ 𝐵) |
17 | linply1.m | . . . 4 ⊢ − = (-g‘𝑃) | |
18 | 8, 17 | grpsubcl 17702 | . . 3 ⊢ ((𝑃 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ (𝐴‘𝐶) ∈ 𝐵) → (𝑋 − (𝐴‘𝐶)) ∈ 𝐵) |
19 | 6, 10, 16, 18 | syl3anc 1475 | . 2 ⊢ (𝜑 → (𝑋 − (𝐴‘𝐶)) ∈ 𝐵) |
20 | 1, 19 | syl5eqel 2853 | 1 ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1630 ∈ wcel 2144 ⟶wf 6027 ‘cfv 6031 (class class class)co 6792 Basecbs 16063 Grpcgrp 17629 -gcsg 17631 Ringcrg 18754 algSccascl 19525 var1cv1 19760 Poly1cpl1 19761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-inf2 8701 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-iin 4655 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-of 7043 df-ofr 7044 df-om 7212 df-1st 7314 df-2nd 7315 df-supp 7446 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-2o 7713 df-oadd 7716 df-er 7895 df-map 8010 df-pm 8011 df-ixp 8062 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 df-fsupp 8431 df-oi 8570 df-card 8964 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-nn 11222 df-2 11280 df-3 11281 df-4 11282 df-5 11283 df-6 11284 df-7 11285 df-8 11286 df-9 11287 df-n0 11494 df-z 11579 df-dec 11695 df-uz 11888 df-fz 12533 df-fzo 12673 df-seq 13008 df-hash 13321 df-struct 16065 df-ndx 16066 df-slot 16067 df-base 16069 df-sets 16070 df-ress 16071 df-plusg 16161 df-mulr 16162 df-sca 16164 df-vsca 16165 df-tset 16167 df-ple 16168 df-0g 16309 df-gsum 16310 df-mre 16453 df-mrc 16454 df-acs 16456 df-mgm 17449 df-sgrp 17491 df-mnd 17502 df-mhm 17542 df-submnd 17543 df-grp 17632 df-minusg 17633 df-sbg 17634 df-mulg 17748 df-subg 17798 df-ghm 17865 df-cntz 17956 df-cmn 18401 df-abl 18402 df-mgp 18697 df-ur 18709 df-ring 18756 df-subrg 18987 df-lmod 19074 df-lss 19142 df-ascl 19528 df-psr 19570 df-mvr 19571 df-mpl 19572 df-opsr 19574 df-psr1 19764 df-vr1 19765 df-ply1 19766 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |