Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linethru Structured version   Visualization version   GIF version

Theorem linethru 32587
Description: If 𝐴 is a line containing two distinct points 𝑃 and 𝑄, then 𝐴 is the line through 𝑃 and 𝑄. Theorem 6.18 of [Schwabhauser] p. 45. (Contributed by Scott Fenton, 28-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
linethru ((𝐴 ∈ LinesEE ∧ (𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝐴 = (𝑃Line𝑄))

Proof of Theorem linethru
Dummy variables 𝑎 𝑏 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ellines 32586 . . 3 (𝐴 ∈ LinesEE ↔ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)(𝑎𝑏𝐴 = (𝑎Line𝑏)))
2 simpll1 1255 . . . . . . . . . . . 12 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄)) → 𝑛 ∈ ℕ)
3 simpll2 1257 . . . . . . . . . . . 12 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄)) → 𝑎 ∈ (𝔼‘𝑛))
4 simpll3 1259 . . . . . . . . . . . 12 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄)) → 𝑏 ∈ (𝔼‘𝑛))
5 simplr 809 . . . . . . . . . . . 12 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄)) → 𝑎𝑏)
6 liness 32579 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ (𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏)) → (𝑎Line𝑏) ⊆ (𝔼‘𝑛))
72, 3, 4, 5, 6syl13anc 1479 . . . . . . . . . . 11 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄)) → (𝑎Line𝑏) ⊆ (𝔼‘𝑛))
8 simprll 821 . . . . . . . . . . 11 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄)) → 𝑃 ∈ (𝑎Line𝑏))
97, 8sseldd 3745 . . . . . . . . . 10 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄)) → 𝑃 ∈ (𝔼‘𝑛))
10 simprlr 822 . . . . . . . . . . 11 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄)) → 𝑄 ∈ (𝑎Line𝑏))
117, 10sseldd 3745 . . . . . . . . . 10 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄)) → 𝑄 ∈ (𝔼‘𝑛))
12 simplll 815 . . . . . . . . . . . . . . . 16 ((((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) → 𝑃 ∈ (𝑎Line𝑏))
1312adantl 473 . . . . . . . . . . . . . . 15 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → 𝑃 ∈ (𝑎Line𝑏))
14 simpll1 1255 . . . . . . . . . . . . . . . 16 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → 𝑛 ∈ ℕ)
15 simpll2 1257 . . . . . . . . . . . . . . . 16 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → 𝑎 ∈ (𝔼‘𝑛))
16 simpll3 1259 . . . . . . . . . . . . . . . 16 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → 𝑏 ∈ (𝔼‘𝑛))
17 simplr 809 . . . . . . . . . . . . . . . 16 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → 𝑎𝑏)
18 simprrl 823 . . . . . . . . . . . . . . . 16 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → 𝑃 ∈ (𝔼‘𝑛))
19 simprlr 822 . . . . . . . . . . . . . . . . 17 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → 𝑃𝑎)
2019necomd 2987 . . . . . . . . . . . . . . . 16 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → 𝑎𝑃)
21 lineelsb2 32582 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ ∧ (𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑎𝑃)) → (𝑃 ∈ (𝑎Line𝑏) → (𝑎Line𝑏) = (𝑎Line𝑃)))
2214, 15, 16, 17, 18, 20, 21syl132anc 1495 . . . . . . . . . . . . . . 15 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → (𝑃 ∈ (𝑎Line𝑏) → (𝑎Line𝑏) = (𝑎Line𝑃)))
2313, 22mpd 15 . . . . . . . . . . . . . 14 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → (𝑎Line𝑏) = (𝑎Line𝑃))
24 linecom 32584 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ ∧ (𝑎 ∈ (𝔼‘𝑛) ∧ 𝑃 ∈ (𝔼‘𝑛) ∧ 𝑎𝑃)) → (𝑎Line𝑃) = (𝑃Line𝑎))
2514, 15, 18, 20, 24syl13anc 1479 . . . . . . . . . . . . . 14 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → (𝑎Line𝑃) = (𝑃Line𝑎))
2623, 25eqtrd 2794 . . . . . . . . . . . . 13 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → (𝑎Line𝑏) = (𝑃Line𝑎))
27 neeq2 2995 . . . . . . . . . . . . . . . . 17 (𝑄 = 𝑎 → (𝑃𝑄𝑃𝑎))
2827anbi2d 742 . . . . . . . . . . . . . . . 16 (𝑄 = 𝑎 → (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ↔ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎)))
2928anbi1d 743 . . . . . . . . . . . . . . 15 (𝑄 = 𝑎 → ((((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ↔ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))))
3029anbi2d 742 . . . . . . . . . . . . . 14 (𝑄 = 𝑎 → ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) ↔ (((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))))))
31 oveq2 6822 . . . . . . . . . . . . . . 15 (𝑄 = 𝑎 → (𝑃Line𝑄) = (𝑃Line𝑎))
3231eqeq2d 2770 . . . . . . . . . . . . . 14 (𝑄 = 𝑎 → ((𝑎Line𝑏) = (𝑃Line𝑄) ↔ (𝑎Line𝑏) = (𝑃Line𝑎)))
3330, 32imbi12d 333 . . . . . . . . . . . . 13 (𝑄 = 𝑎 → (((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → (𝑎Line𝑏) = (𝑃Line𝑄)) ↔ ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → (𝑎Line𝑏) = (𝑃Line𝑎))))
3426, 33mpbiri 248 . . . . . . . . . . . 12 (𝑄 = 𝑎 → ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → (𝑎Line𝑏) = (𝑃Line𝑄)))
35 simp1 1131 . . . . . . . . . . . . . . . . . 18 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → ((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏))
36 simp2l 1242 . . . . . . . . . . . . . . . . . 18 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄))
3735, 36, 10syl2anc 696 . . . . . . . . . . . . . . . . 17 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → 𝑄 ∈ (𝑎Line𝑏))
38 simp1l1 1351 . . . . . . . . . . . . . . . . . 18 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → 𝑛 ∈ ℕ)
39 simp1l2 1352 . . . . . . . . . . . . . . . . . 18 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → 𝑎 ∈ (𝔼‘𝑛))
40 simp1l3 1353 . . . . . . . . . . . . . . . . . 18 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → 𝑏 ∈ (𝔼‘𝑛))
41 simp1r 1241 . . . . . . . . . . . . . . . . . 18 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → 𝑎𝑏)
42 simp2rr 1310 . . . . . . . . . . . . . . . . . 18 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → 𝑄 ∈ (𝔼‘𝑛))
43 simp3 1133 . . . . . . . . . . . . . . . . . . 19 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → 𝑄𝑎)
4443necomd 2987 . . . . . . . . . . . . . . . . . 18 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → 𝑎𝑄)
45 lineelsb2 32582 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ ∧ (𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ (𝑄 ∈ (𝔼‘𝑛) ∧ 𝑎𝑄)) → (𝑄 ∈ (𝑎Line𝑏) → (𝑎Line𝑏) = (𝑎Line𝑄)))
4638, 39, 40, 41, 42, 44, 45syl132anc 1495 . . . . . . . . . . . . . . . . 17 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → (𝑄 ∈ (𝑎Line𝑏) → (𝑎Line𝑏) = (𝑎Line𝑄)))
4737, 46mpd 15 . . . . . . . . . . . . . . . 16 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → (𝑎Line𝑏) = (𝑎Line𝑄))
48 linecom 32584 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ ∧ (𝑎 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛) ∧ 𝑎𝑄)) → (𝑎Line𝑄) = (𝑄Line𝑎))
4938, 39, 42, 44, 48syl13anc 1479 . . . . . . . . . . . . . . . 16 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → (𝑎Line𝑄) = (𝑄Line𝑎))
5047, 49eqtrd 2794 . . . . . . . . . . . . . . 15 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → (𝑎Line𝑏) = (𝑄Line𝑎))
5136simplld 808 . . . . . . . . . . . . . . . . 17 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → 𝑃 ∈ (𝑎Line𝑏))
5251, 50eleqtrd 2841 . . . . . . . . . . . . . . . 16 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → 𝑃 ∈ (𝑄Line𝑎))
53 simp2rl 1309 . . . . . . . . . . . . . . . . 17 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → 𝑃 ∈ (𝔼‘𝑛))
54 simp2lr 1308 . . . . . . . . . . . . . . . . . 18 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → 𝑃𝑄)
5554necomd 2987 . . . . . . . . . . . . . . . . 17 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → 𝑄𝑃)
56 lineelsb2 32582 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑄𝑎) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄𝑃)) → (𝑃 ∈ (𝑄Line𝑎) → (𝑄Line𝑎) = (𝑄Line𝑃)))
5738, 42, 39, 43, 53, 55, 56syl132anc 1495 . . . . . . . . . . . . . . . 16 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → (𝑃 ∈ (𝑄Line𝑎) → (𝑄Line𝑎) = (𝑄Line𝑃)))
5852, 57mpd 15 . . . . . . . . . . . . . . 15 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → (𝑄Line𝑎) = (𝑄Line𝑃))
59 linecom 32584 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑛) ∧ 𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄𝑃)) → (𝑄Line𝑃) = (𝑃Line𝑄))
6038, 42, 53, 55, 59syl13anc 1479 . . . . . . . . . . . . . . 15 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → (𝑄Line𝑃) = (𝑃Line𝑄))
6150, 58, 603eqtrd 2798 . . . . . . . . . . . . . 14 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛))) ∧ 𝑄𝑎) → (𝑎Line𝑏) = (𝑃Line𝑄))
62613expa 1112 . . . . . . . . . . . . 13 (((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) ∧ 𝑄𝑎) → (𝑎Line𝑏) = (𝑃Line𝑄))
6362expcom 450 . . . . . . . . . . . 12 (𝑄𝑎 → ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → (𝑎Line𝑏) = (𝑃Line𝑄)))
6434, 63pm2.61ine 3015 . . . . . . . . . . 11 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) ∧ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)))) → (𝑎Line𝑏) = (𝑃Line𝑄))
6564expr 644 . . . . . . . . . 10 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄)) → ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛)) → (𝑎Line𝑏) = (𝑃Line𝑄)))
669, 11, 65mp2and 717 . . . . . . . . 9 ((((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) ∧ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄)) → (𝑎Line𝑏) = (𝑃Line𝑄))
6766ex 449 . . . . . . . 8 (((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) → (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) → (𝑎Line𝑏) = (𝑃Line𝑄)))
68 eleq2 2828 . . . . . . . . . . 11 (𝐴 = (𝑎Line𝑏) → (𝑃𝐴𝑃 ∈ (𝑎Line𝑏)))
69 eleq2 2828 . . . . . . . . . . 11 (𝐴 = (𝑎Line𝑏) → (𝑄𝐴𝑄 ∈ (𝑎Line𝑏)))
7068, 69anbi12d 749 . . . . . . . . . 10 (𝐴 = (𝑎Line𝑏) → ((𝑃𝐴𝑄𝐴) ↔ (𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏))))
7170anbi1d 743 . . . . . . . . 9 (𝐴 = (𝑎Line𝑏) → (((𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) ↔ ((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄)))
72 eqeq1 2764 . . . . . . . . 9 (𝐴 = (𝑎Line𝑏) → (𝐴 = (𝑃Line𝑄) ↔ (𝑎Line𝑏) = (𝑃Line𝑄)))
7371, 72imbi12d 333 . . . . . . . 8 (𝐴 = (𝑎Line𝑏) → ((((𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝐴 = (𝑃Line𝑄)) ↔ (((𝑃 ∈ (𝑎Line𝑏) ∧ 𝑄 ∈ (𝑎Line𝑏)) ∧ 𝑃𝑄) → (𝑎Line𝑏) = (𝑃Line𝑄))))
7467, 73syl5ibrcom 237 . . . . . . 7 (((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ 𝑎𝑏) → (𝐴 = (𝑎Line𝑏) → (((𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝐴 = (𝑃Line𝑄))))
7574expimpd 630 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) → ((𝑎𝑏𝐴 = (𝑎Line𝑏)) → (((𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝐴 = (𝑃Line𝑄))))
76753expa 1112 . . . . 5 (((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛)) ∧ 𝑏 ∈ (𝔼‘𝑛)) → ((𝑎𝑏𝐴 = (𝑎Line𝑏)) → (((𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝐴 = (𝑃Line𝑄))))
7776rexlimdva 3169 . . . 4 ((𝑛 ∈ ℕ ∧ 𝑎 ∈ (𝔼‘𝑛)) → (∃𝑏 ∈ (𝔼‘𝑛)(𝑎𝑏𝐴 = (𝑎Line𝑏)) → (((𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝐴 = (𝑃Line𝑄))))
7877rexlimivv 3174 . . 3 (∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)(𝑎𝑏𝐴 = (𝑎Line𝑏)) → (((𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝐴 = (𝑃Line𝑄)))
791, 78sylbi 207 . 2 (𝐴 ∈ LinesEE → (((𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝐴 = (𝑃Line𝑄)))
80793impib 1109 1 ((𝐴 ∈ LinesEE ∧ (𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝐴 = (𝑃Line𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1632  wcel 2139  wne 2932  wrex 3051  wss 3715  cfv 6049  (class class class)co 6814  cn 11232  𝔼cee 25988  Linecline2 32568  LinesEEclines2 32570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-er 7913  df-ec 7915  df-map 8027  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-sup 8515  df-oi 8582  df-card 8975  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-n0 11505  df-z 11590  df-uz 11900  df-rp 12046  df-ico 12394  df-icc 12395  df-fz 12540  df-fzo 12680  df-seq 13016  df-exp 13075  df-hash 13332  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-clim 14438  df-sum 14636  df-ee 25991  df-btwn 25992  df-cgr 25993  df-ofs 32417  df-colinear 32473  df-ifs 32474  df-cgr3 32475  df-fs 32476  df-line2 32571  df-lines2 32573
This theorem is referenced by:  hilbert1.2  32589  lineintmo  32591
  Copyright terms: Public domain W3C validator