![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lineintmo | Structured version Visualization version GIF version |
Description: Two distinct lines intersect in at most one point. Theorem 6.21 of [Schwabhauser] p. 46. (Contributed by Scott Fenton, 29-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
lineintmo | ⊢ ((𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE ∧ 𝐴 ≠ 𝐵) → ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an4 882 | . . . . . . 7 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) | |
2 | linethru 32385 | . . . . . . . . . . . . 13 ⊢ ((𝐴 ∈ LinesEE ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) → 𝐴 = (𝑥Line𝑦)) | |
3 | 2 | 3expa 1284 | . . . . . . . . . . . 12 ⊢ (((𝐴 ∈ LinesEE ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝑥 ≠ 𝑦) → 𝐴 = (𝑥Line𝑦)) |
4 | linethru 32385 | . . . . . . . . . . . . 13 ⊢ ((𝐵 ∈ LinesEE ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 ≠ 𝑦) → 𝐵 = (𝑥Line𝑦)) | |
5 | 4 | 3expa 1284 | . . . . . . . . . . . 12 ⊢ (((𝐵 ∈ LinesEE ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑥 ≠ 𝑦) → 𝐵 = (𝑥Line𝑦)) |
6 | eqtr3 2672 | . . . . . . . . . . . 12 ⊢ ((𝐴 = (𝑥Line𝑦) ∧ 𝐵 = (𝑥Line𝑦)) → 𝐴 = 𝐵) | |
7 | 3, 5, 6 | syl2an 493 | . . . . . . . . . . 11 ⊢ ((((𝐴 ∈ LinesEE ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝑥 ≠ 𝑦) ∧ ((𝐵 ∈ LinesEE ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑥 ≠ 𝑦)) → 𝐴 = 𝐵) |
8 | 7 | anandirs 891 | . . . . . . . . . 10 ⊢ ((((𝐴 ∈ LinesEE ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ (𝐵 ∈ LinesEE ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) ∧ 𝑥 ≠ 𝑦) → 𝐴 = 𝐵) |
9 | 8 | ex 449 | . . . . . . . . 9 ⊢ (((𝐴 ∈ LinesEE ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ (𝐵 ∈ LinesEE ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) → (𝑥 ≠ 𝑦 → 𝐴 = 𝐵)) |
10 | 9 | necon1d 2845 | . . . . . . . 8 ⊢ (((𝐴 ∈ LinesEE ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ (𝐵 ∈ LinesEE ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) → (𝐴 ≠ 𝐵 → 𝑥 = 𝑦)) |
11 | 10 | an4s 886 | . . . . . . 7 ⊢ (((𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) → (𝐴 ≠ 𝐵 → 𝑥 = 𝑦)) |
12 | 1, 11 | sylan2b 491 | . . . . . 6 ⊢ (((𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) → (𝐴 ≠ 𝐵 → 𝑥 = 𝑦)) |
13 | 12 | ex 449 | . . . . 5 ⊢ ((𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE) → (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝐴 ≠ 𝐵 → 𝑥 = 𝑦))) |
14 | 13 | com23 86 | . . . 4 ⊢ ((𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE) → (𝐴 ≠ 𝐵 → (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝑥 = 𝑦))) |
15 | 14 | 3impia 1280 | . . 3 ⊢ ((𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE ∧ 𝐴 ≠ 𝐵) → (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝑥 = 𝑦)) |
16 | 15 | alrimivv 1896 | . 2 ⊢ ((𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE ∧ 𝐴 ≠ 𝐵) → ∀𝑥∀𝑦(((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝑥 = 𝑦)) |
17 | eleq1 2718 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
18 | eleq1 2718 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) | |
19 | 17, 18 | anbi12d 747 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
20 | 19 | mo4 2546 | . 2 ⊢ (∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ ∀𝑥∀𝑦(((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝑥 = 𝑦)) |
21 | 16, 20 | sylibr 224 | 1 ⊢ ((𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE ∧ 𝐴 ≠ 𝐵) → ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1054 ∀wal 1521 = wceq 1523 ∈ wcel 2030 ∃*wmo 2499 ≠ wne 2823 (class class class)co 6690 Linecline2 32366 LinesEEclines2 32368 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-inf2 8576 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-fal 1529 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-ec 7789 df-map 7901 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-sup 8389 df-oi 8456 df-card 8803 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-n0 11331 df-z 11416 df-uz 11726 df-rp 11871 df-ico 12219 df-icc 12220 df-fz 12365 df-fzo 12505 df-seq 12842 df-exp 12901 df-hash 13158 df-cj 13883 df-re 13884 df-im 13885 df-sqrt 14019 df-abs 14020 df-clim 14263 df-sum 14461 df-ee 25816 df-btwn 25817 df-cgr 25818 df-ofs 32215 df-colinear 32271 df-ifs 32272 df-cgr3 32273 df-fs 32274 df-line2 32369 df-lines2 32371 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |