Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lineelsb2 Structured version   Visualization version   GIF version

Theorem lineelsb2 32380
Description: If 𝑆 lies on 𝑃𝑄, then 𝑃𝑄 = 𝑃𝑆. Theorem 6.16 of [Schwabhauser] p. 45. (Contributed by Scott Fenton, 27-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
lineelsb2 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) → (𝑆 ∈ (𝑃Line𝑄) → (𝑃Line𝑄) = (𝑃Line𝑆)))

Proof of Theorem lineelsb2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1084 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ)
2 simpl3l 1136 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑆 ∈ (𝔼‘𝑁))
3 simpl21 1159 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑃 ∈ (𝔼‘𝑁))
4 simpl22 1160 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑄 ∈ (𝔼‘𝑁))
5 brcolinear 32291 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁))) → (𝑆 Colinear ⟨𝑃, 𝑄⟩ ↔ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∨ 𝑃 Btwn ⟨𝑄, 𝑆⟩ ∨ 𝑄 Btwn ⟨𝑆, 𝑃⟩)))
61, 2, 3, 4, 5syl13anc 1368 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑆 Colinear ⟨𝑃, 𝑄⟩ ↔ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∨ 𝑃 Btwn ⟨𝑄, 𝑆⟩ ∨ 𝑄 Btwn ⟨𝑆, 𝑃⟩)))
76biimpa 500 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑆 Colinear ⟨𝑃, 𝑄⟩) → (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∨ 𝑃 Btwn ⟨𝑄, 𝑆⟩ ∨ 𝑄 Btwn ⟨𝑆, 𝑃⟩))
8 simpr 476 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑥 ∈ (𝔼‘𝑁))
9 brcolinear 32291 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁))) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ (𝑥 Btwn ⟨𝑃, 𝑄⟩ ∨ 𝑃 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑄 Btwn ⟨𝑥, 𝑃⟩)))
101, 8, 3, 4, 9syl13anc 1368 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ (𝑥 Btwn ⟨𝑃, 𝑄⟩ ∨ 𝑃 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑄 Btwn ⟨𝑥, 𝑃⟩)))
1110adantr 480 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑆 Btwn ⟨𝑃, 𝑄⟩) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ (𝑥 Btwn ⟨𝑃, 𝑄⟩ ∨ 𝑃 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑄 Btwn ⟨𝑥, 𝑃⟩)))
12 btwnconn3 32335 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑆 ∈ (𝔼‘𝑁)) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁))) → ((𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩) → (𝑆 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑆⟩)))
131, 3, 2, 8, 4, 12syl122anc 1375 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩) → (𝑆 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑆⟩)))
1413imp 444 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) → (𝑆 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑆⟩))
15 btwncolinear3 32303 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝑆 ∈ (𝔼‘𝑁))) → (𝑆 Btwn ⟨𝑃, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
161, 3, 8, 2, 15syl13anc 1368 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑆 Btwn ⟨𝑃, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
17 btwncolinear5 32305 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑆 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → (𝑥 Btwn ⟨𝑃, 𝑆⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
181, 3, 2, 8, 17syl13anc 1368 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑥 Btwn ⟨𝑃, 𝑆⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
1916, 18jaod 394 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑆 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑆⟩) → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
2019adantr 480 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) → ((𝑆 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑆⟩) → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
2114, 20mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) → 𝑥 Colinear ⟨𝑃, 𝑆⟩)
2221expr 642 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑆 Btwn ⟨𝑃, 𝑄⟩) → (𝑥 Btwn ⟨𝑃, 𝑄⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
23 simprl 809 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → 𝑆 Btwn ⟨𝑃, 𝑄⟩)
241, 2, 3, 4, 23btwncomand 32247 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → 𝑆 Btwn ⟨𝑄, 𝑃⟩)
25 simprr 811 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → 𝑃 Btwn ⟨𝑄, 𝑥⟩)
261, 4, 2, 3, 8, 24, 25btwnexch3and 32253 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → 𝑃 Btwn ⟨𝑆, 𝑥⟩)
27 btwncolinear4 32304 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → (𝑃 Btwn ⟨𝑆, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
281, 2, 8, 3, 27syl13anc 1368 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑃 Btwn ⟨𝑆, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
2928adantr 480 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → (𝑃 Btwn ⟨𝑆, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
3026, 29mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → 𝑥 Colinear ⟨𝑃, 𝑆⟩)
3130expr 642 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑆 Btwn ⟨𝑃, 𝑄⟩) → (𝑃 Btwn ⟨𝑄, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
32 simprl 809 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑆 Btwn ⟨𝑃, 𝑄⟩)
33 simprr 811 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑄 Btwn ⟨𝑥, 𝑃⟩)
341, 4, 8, 3, 33btwncomand 32247 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑄 Btwn ⟨𝑃, 𝑥⟩)
351, 3, 2, 4, 8, 32, 34btwnexchand 32258 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑆 Btwn ⟨𝑃, 𝑥⟩)
3616adantr 480 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → (𝑆 Btwn ⟨𝑃, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
3735, 36mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑥 Colinear ⟨𝑃, 𝑆⟩)
3837expr 642 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑆 Btwn ⟨𝑃, 𝑄⟩) → (𝑄 Btwn ⟨𝑥, 𝑃⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
3922, 31, 383jaod 1432 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑆 Btwn ⟨𝑃, 𝑄⟩) → ((𝑥 Btwn ⟨𝑃, 𝑄⟩ ∨ 𝑃 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑄 Btwn ⟨𝑥, 𝑃⟩) → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
4011, 39sylbid 230 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑆 Btwn ⟨𝑃, 𝑄⟩) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
41 brcolinear 32291 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁) ∧ 𝑆 ∈ (𝔼‘𝑁))) → (𝑥 Colinear ⟨𝑃, 𝑆⟩ ↔ (𝑥 Btwn ⟨𝑃, 𝑆⟩ ∨ 𝑃 Btwn ⟨𝑆, 𝑥⟩ ∨ 𝑆 Btwn ⟨𝑥, 𝑃⟩)))
421, 8, 3, 2, 41syl13anc 1368 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑥 Colinear ⟨𝑃, 𝑆⟩ ↔ (𝑥 Btwn ⟨𝑃, 𝑆⟩ ∨ 𝑃 Btwn ⟨𝑆, 𝑥⟩ ∨ 𝑆 Btwn ⟨𝑥, 𝑃⟩)))
4342adantr 480 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑆 Btwn ⟨𝑃, 𝑄⟩) → (𝑥 Colinear ⟨𝑃, 𝑆⟩ ↔ (𝑥 Btwn ⟨𝑃, 𝑆⟩ ∨ 𝑃 Btwn ⟨𝑆, 𝑥⟩ ∨ 𝑆 Btwn ⟨𝑥, 𝑃⟩)))
44 simprr 811 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → 𝑥 Btwn ⟨𝑃, 𝑆⟩)
45 simprl 809 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → 𝑆 Btwn ⟨𝑃, 𝑄⟩)
461, 3, 8, 2, 4, 44, 45btwnexchand 32258 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → 𝑥 Btwn ⟨𝑃, 𝑄⟩)
47 btwncolinear5 32305 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → (𝑥 Btwn ⟨𝑃, 𝑄⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
481, 3, 4, 8, 47syl13anc 1368 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑥 Btwn ⟨𝑃, 𝑄⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
4948adantr 480 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → (𝑥 Btwn ⟨𝑃, 𝑄⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
5046, 49mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → 𝑥 Colinear ⟨𝑃, 𝑄⟩)
5150expr 642 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑆 Btwn ⟨𝑃, 𝑄⟩) → (𝑥 Btwn ⟨𝑃, 𝑆⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
52 simpl3r 1137 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑃𝑆)
5352necomd 2878 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑆𝑃)
5453adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → 𝑆𝑃)
55 simprl 809 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → 𝑆 Btwn ⟨𝑃, 𝑄⟩)
561, 2, 3, 4, 55btwncomand 32247 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → 𝑆 Btwn ⟨𝑄, 𝑃⟩)
57 simprr 811 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → 𝑃 Btwn ⟨𝑆, 𝑥⟩)
58 btwnouttr2 32254 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝑆 ∈ (𝔼‘𝑁)) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → ((𝑆𝑃𝑆 Btwn ⟨𝑄, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩) → 𝑃 Btwn ⟨𝑄, 𝑥⟩))
591, 4, 2, 3, 8, 58syl122anc 1375 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑆𝑃𝑆 Btwn ⟨𝑄, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩) → 𝑃 Btwn ⟨𝑄, 𝑥⟩))
6059adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → ((𝑆𝑃𝑆 Btwn ⟨𝑄, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩) → 𝑃 Btwn ⟨𝑄, 𝑥⟩))
6154, 56, 57, 60mp3and 1467 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → 𝑃 Btwn ⟨𝑄, 𝑥⟩)
62 btwncolinear4 32304 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → (𝑃 Btwn ⟨𝑄, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
631, 4, 8, 3, 62syl13anc 1368 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑃 Btwn ⟨𝑄, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
6463adantr 480 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → (𝑃 Btwn ⟨𝑄, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
6561, 64mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → 𝑥 Colinear ⟨𝑃, 𝑄⟩)
6665expr 642 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑆 Btwn ⟨𝑃, 𝑄⟩) → (𝑃 Btwn ⟨𝑆, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
6752adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑃𝑆)
68 simprl 809 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑆 Btwn ⟨𝑃, 𝑄⟩)
69 simprr 811 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑆 Btwn ⟨𝑥, 𝑃⟩)
701, 2, 8, 3, 69btwncomand 32247 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑆 Btwn ⟨𝑃, 𝑥⟩)
71 btwnconn1 32333 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑆 ∈ (𝔼‘𝑁)) ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → ((𝑃𝑆𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑆 Btwn ⟨𝑃, 𝑥⟩) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)))
721, 3, 2, 4, 8, 71syl122anc 1375 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑃𝑆𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑆 Btwn ⟨𝑃, 𝑥⟩) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)))
7372adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → ((𝑃𝑆𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑆 Btwn ⟨𝑃, 𝑥⟩) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)))
7467, 68, 70, 73mp3and 1467 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩))
75 btwncolinear3 32303 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁))) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
761, 3, 8, 4, 75syl13anc 1368 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
7776, 48jaod 394 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
7877adantr 480 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
7974, 78mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑥 Colinear ⟨𝑃, 𝑄⟩)
8079expr 642 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑆 Btwn ⟨𝑃, 𝑄⟩) → (𝑆 Btwn ⟨𝑥, 𝑃⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
8151, 66, 803jaod 1432 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑆 Btwn ⟨𝑃, 𝑄⟩) → ((𝑥 Btwn ⟨𝑃, 𝑆⟩ ∨ 𝑃 Btwn ⟨𝑆, 𝑥⟩ ∨ 𝑆 Btwn ⟨𝑥, 𝑃⟩) → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
8243, 81sylbid 230 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑆 Btwn ⟨𝑃, 𝑄⟩) → (𝑥 Colinear ⟨𝑃, 𝑆⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
8340, 82impbid 202 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑆 Btwn ⟨𝑃, 𝑄⟩) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ 𝑥 Colinear ⟨𝑃, 𝑆⟩))
8410adantr 480 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑆⟩) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ (𝑥 Btwn ⟨𝑃, 𝑄⟩ ∨ 𝑃 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑄 Btwn ⟨𝑥, 𝑃⟩)))
85 simprr 811 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) → 𝑥 Btwn ⟨𝑃, 𝑄⟩)
861, 8, 3, 4, 85btwncomand 32247 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) → 𝑥 Btwn ⟨𝑄, 𝑃⟩)
87 simprl 809 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) → 𝑃 Btwn ⟨𝑄, 𝑆⟩)
881, 4, 8, 3, 2, 86, 87btwnexch3and 32253 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) → 𝑃 Btwn ⟨𝑥, 𝑆⟩)
89 btwncolinear2 32302 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → (𝑃 Btwn ⟨𝑥, 𝑆⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
901, 8, 2, 3, 89syl13anc 1368 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑃 Btwn ⟨𝑥, 𝑆⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
9190adantr 480 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) → (𝑃 Btwn ⟨𝑥, 𝑆⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
9288, 91mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) → 𝑥 Colinear ⟨𝑃, 𝑆⟩)
9392expr 642 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑆⟩) → (𝑥 Btwn ⟨𝑃, 𝑄⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
94 simpl23 1161 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑃𝑄)
9594necomd 2878 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑄𝑃)
9695adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → 𝑄𝑃)
97 simprl 809 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → 𝑃 Btwn ⟨𝑄, 𝑆⟩)
98 simprr 811 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → 𝑃 Btwn ⟨𝑄, 𝑥⟩)
99 btwnconn2 32334 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁)) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → ((𝑄𝑃𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩) → (𝑆 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑆⟩)))
1001, 4, 3, 2, 8, 99syl122anc 1375 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑄𝑃𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩) → (𝑆 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑆⟩)))
101100adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → ((𝑄𝑃𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩) → (𝑆 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑆⟩)))
10296, 97, 98, 101mp3and 1467 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → (𝑆 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑆⟩))
10319adantr 480 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → ((𝑆 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑆⟩) → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
104102, 103mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → 𝑥 Colinear ⟨𝑃, 𝑆⟩)
105104expr 642 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑆⟩) → (𝑃 Btwn ⟨𝑄, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
10694adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑃𝑄)
107 simprl 809 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑃 Btwn ⟨𝑄, 𝑆⟩)
1081, 3, 4, 2, 107btwncomand 32247 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑃 Btwn ⟨𝑆, 𝑄⟩)
109 simprr 811 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑄 Btwn ⟨𝑥, 𝑃⟩)
1101, 4, 8, 3, 109btwncomand 32247 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑄 Btwn ⟨𝑃, 𝑥⟩)
111 btwnouttr 32256 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁)) ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → ((𝑃𝑄𝑃 Btwn ⟨𝑆, 𝑄⟩ ∧ 𝑄 Btwn ⟨𝑃, 𝑥⟩) → 𝑃 Btwn ⟨𝑆, 𝑥⟩))
1121, 2, 3, 4, 8, 111syl122anc 1375 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑃𝑄𝑃 Btwn ⟨𝑆, 𝑄⟩ ∧ 𝑄 Btwn ⟨𝑃, 𝑥⟩) → 𝑃 Btwn ⟨𝑆, 𝑥⟩))
113112adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → ((𝑃𝑄𝑃 Btwn ⟨𝑆, 𝑄⟩ ∧ 𝑄 Btwn ⟨𝑃, 𝑥⟩) → 𝑃 Btwn ⟨𝑆, 𝑥⟩))
114106, 108, 110, 113mp3and 1467 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑃 Btwn ⟨𝑆, 𝑥⟩)
11528adantr 480 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → (𝑃 Btwn ⟨𝑆, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
116114, 115mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑥 Colinear ⟨𝑃, 𝑆⟩)
117116expr 642 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑆⟩) → (𝑄 Btwn ⟨𝑥, 𝑃⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
11893, 105, 1173jaod 1432 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑆⟩) → ((𝑥 Btwn ⟨𝑃, 𝑄⟩ ∨ 𝑃 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑄 Btwn ⟨𝑥, 𝑃⟩) → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
11984, 118sylbid 230 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑆⟩) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
12042adantr 480 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑆⟩) → (𝑥 Colinear ⟨𝑃, 𝑆⟩ ↔ (𝑥 Btwn ⟨𝑃, 𝑆⟩ ∨ 𝑃 Btwn ⟨𝑆, 𝑥⟩ ∨ 𝑆 Btwn ⟨𝑥, 𝑃⟩)))
121 simprr 811 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → 𝑥 Btwn ⟨𝑃, 𝑆⟩)
1221, 8, 3, 2, 121btwncomand 32247 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → 𝑥 Btwn ⟨𝑆, 𝑃⟩)
123 simprl 809 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → 𝑃 Btwn ⟨𝑄, 𝑆⟩)
1241, 3, 4, 2, 123btwncomand 32247 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → 𝑃 Btwn ⟨𝑆, 𝑄⟩)
1251, 2, 8, 3, 4, 122, 124btwnexch3and 32253 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → 𝑃 Btwn ⟨𝑥, 𝑄⟩)
126 btwncolinear2 32302 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → (𝑃 Btwn ⟨𝑥, 𝑄⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
1271, 8, 4, 3, 126syl13anc 1368 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑃 Btwn ⟨𝑥, 𝑄⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
128127adantr 480 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → (𝑃 Btwn ⟨𝑥, 𝑄⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
129125, 128mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → 𝑥 Colinear ⟨𝑃, 𝑄⟩)
130129expr 642 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑆⟩) → (𝑥 Btwn ⟨𝑃, 𝑆⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
13153adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → 𝑆𝑃)
132 simprl 809 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → 𝑃 Btwn ⟨𝑄, 𝑆⟩)
1331, 3, 4, 2, 132btwncomand 32247 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → 𝑃 Btwn ⟨𝑆, 𝑄⟩)
134 simprr 811 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → 𝑃 Btwn ⟨𝑆, 𝑥⟩)
135 btwnconn2 32334 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁)) ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → ((𝑆𝑃𝑃 Btwn ⟨𝑆, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)))
1361, 2, 3, 4, 8, 135syl122anc 1375 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑆𝑃𝑃 Btwn ⟨𝑆, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)))
137136adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → ((𝑆𝑃𝑃 Btwn ⟨𝑆, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)))
138131, 133, 134, 137mp3and 1467 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩))
13977adantr 480 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
140138, 139mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → 𝑥 Colinear ⟨𝑃, 𝑄⟩)
141140expr 642 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑆⟩) → (𝑃 Btwn ⟨𝑆, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
14252adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑃𝑆)
143 simprl 809 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑃 Btwn ⟨𝑄, 𝑆⟩)
144 simprr 811 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑆 Btwn ⟨𝑥, 𝑃⟩)
1451, 2, 8, 3, 144btwncomand 32247 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑆 Btwn ⟨𝑃, 𝑥⟩)
146 btwnouttr 32256 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁)) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → ((𝑃𝑆𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑆 Btwn ⟨𝑃, 𝑥⟩) → 𝑃 Btwn ⟨𝑄, 𝑥⟩))
1471, 4, 3, 2, 8, 146syl122anc 1375 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑃𝑆𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑆 Btwn ⟨𝑃, 𝑥⟩) → 𝑃 Btwn ⟨𝑄, 𝑥⟩))
148147adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → ((𝑃𝑆𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑆 Btwn ⟨𝑃, 𝑥⟩) → 𝑃 Btwn ⟨𝑄, 𝑥⟩))
149142, 143, 145, 148mp3and 1467 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑃 Btwn ⟨𝑄, 𝑥⟩)
15063adantr 480 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → (𝑃 Btwn ⟨𝑄, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
151149, 150mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑥 Colinear ⟨𝑃, 𝑄⟩)
152151expr 642 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑆⟩) → (𝑆 Btwn ⟨𝑥, 𝑃⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
153130, 141, 1523jaod 1432 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑆⟩) → ((𝑥 Btwn ⟨𝑃, 𝑆⟩ ∨ 𝑃 Btwn ⟨𝑆, 𝑥⟩ ∨ 𝑆 Btwn ⟨𝑥, 𝑃⟩) → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
154120, 153sylbid 230 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑆⟩) → (𝑥 Colinear ⟨𝑃, 𝑆⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
155119, 154impbid 202 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑆⟩) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ 𝑥 Colinear ⟨𝑃, 𝑆⟩))
15610adantr 480 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑄 Btwn ⟨𝑆, 𝑃⟩) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ (𝑥 Btwn ⟨𝑃, 𝑄⟩ ∨ 𝑃 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑄 Btwn ⟨𝑥, 𝑃⟩)))
157 simprr 811 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) → 𝑥 Btwn ⟨𝑃, 𝑄⟩)
158 simprl 809 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) → 𝑄 Btwn ⟨𝑆, 𝑃⟩)
1591, 4, 2, 3, 158btwncomand 32247 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) → 𝑄 Btwn ⟨𝑃, 𝑆⟩)
1601, 3, 8, 4, 2, 157, 159btwnexchand 32258 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) → 𝑥 Btwn ⟨𝑃, 𝑆⟩)
16118adantr 480 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) → (𝑥 Btwn ⟨𝑃, 𝑆⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
162160, 161mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) → 𝑥 Colinear ⟨𝑃, 𝑆⟩)
163162expr 642 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑄 Btwn ⟨𝑆, 𝑃⟩) → (𝑥 Btwn ⟨𝑃, 𝑄⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
16495adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → 𝑄𝑃)
165 simprl 809 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → 𝑄 Btwn ⟨𝑆, 𝑃⟩)
166 simprr 811 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → 𝑃 Btwn ⟨𝑄, 𝑥⟩)
167 btwnouttr2 32254 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁)) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → ((𝑄𝑃𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩) → 𝑃 Btwn ⟨𝑆, 𝑥⟩))
1681, 2, 4, 3, 8, 167syl122anc 1375 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑄𝑃𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩) → 𝑃 Btwn ⟨𝑆, 𝑥⟩))
169168adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → ((𝑄𝑃𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩) → 𝑃 Btwn ⟨𝑆, 𝑥⟩))
170164, 165, 166, 169mp3and 1467 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → 𝑃 Btwn ⟨𝑆, 𝑥⟩)
17128adantr 480 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → (𝑃 Btwn ⟨𝑆, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
172170, 171mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → 𝑥 Colinear ⟨𝑃, 𝑆⟩)
173172expr 642 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑄 Btwn ⟨𝑆, 𝑃⟩) → (𝑃 Btwn ⟨𝑄, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
17494adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑃𝑄)
175 simprl 809 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑄 Btwn ⟨𝑆, 𝑃⟩)
1761, 4, 2, 3, 175btwncomand 32247 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑄 Btwn ⟨𝑃, 𝑆⟩)
177 simprr 811 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑄 Btwn ⟨𝑥, 𝑃⟩)
1781, 4, 8, 3, 177btwncomand 32247 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑄 Btwn ⟨𝑃, 𝑥⟩)
179 btwnconn1 32333 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁)) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → ((𝑃𝑄𝑄 Btwn ⟨𝑃, 𝑆⟩ ∧ 𝑄 Btwn ⟨𝑃, 𝑥⟩) → (𝑆 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑆⟩)))
1801, 3, 4, 2, 8, 179syl122anc 1375 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑃𝑄𝑄 Btwn ⟨𝑃, 𝑆⟩ ∧ 𝑄 Btwn ⟨𝑃, 𝑥⟩) → (𝑆 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑆⟩)))
181180adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → ((𝑃𝑄𝑄 Btwn ⟨𝑃, 𝑆⟩ ∧ 𝑄 Btwn ⟨𝑃, 𝑥⟩) → (𝑆 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑆⟩)))
182174, 176, 178, 181mp3and 1467 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → (𝑆 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑆⟩))
18319adantr 480 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → ((𝑆 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑆⟩) → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
184182, 183mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑥 Colinear ⟨𝑃, 𝑆⟩)
185184expr 642 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑄 Btwn ⟨𝑆, 𝑃⟩) → (𝑄 Btwn ⟨𝑥, 𝑃⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
186163, 173, 1853jaod 1432 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑄 Btwn ⟨𝑆, 𝑃⟩) → ((𝑥 Btwn ⟨𝑃, 𝑄⟩ ∨ 𝑃 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑄 Btwn ⟨𝑥, 𝑃⟩) → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
187156, 186sylbid 230 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑄 Btwn ⟨𝑆, 𝑃⟩) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
18842adantr 480 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑄 Btwn ⟨𝑆, 𝑃⟩) → (𝑥 Colinear ⟨𝑃, 𝑆⟩ ↔ (𝑥 Btwn ⟨𝑃, 𝑆⟩ ∨ 𝑃 Btwn ⟨𝑆, 𝑥⟩ ∨ 𝑆 Btwn ⟨𝑥, 𝑃⟩)))
189 simprl 809 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → 𝑄 Btwn ⟨𝑆, 𝑃⟩)
1901, 4, 2, 3, 189btwncomand 32247 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → 𝑄 Btwn ⟨𝑃, 𝑆⟩)
191 simprr 811 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → 𝑥 Btwn ⟨𝑃, 𝑆⟩)
192 btwnconn3 32335 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁)) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑆 ∈ (𝔼‘𝑁))) → ((𝑄 Btwn ⟨𝑃, 𝑆⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)))
1931, 3, 4, 8, 2, 192syl122anc 1375 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑄 Btwn ⟨𝑃, 𝑆⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)))
194193adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → ((𝑄 Btwn ⟨𝑃, 𝑆⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)))
195190, 191, 194mp2and 715 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩))
19677adantr 480 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
197195, 196mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → 𝑥 Colinear ⟨𝑃, 𝑄⟩)
198197expr 642 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑄 Btwn ⟨𝑆, 𝑃⟩) → (𝑥 Btwn ⟨𝑃, 𝑆⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
199 simprl 809 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → 𝑄 Btwn ⟨𝑆, 𝑃⟩)
200 simprr 811 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → 𝑃 Btwn ⟨𝑆, 𝑥⟩)
2011, 2, 4, 3, 8, 199, 200btwnexch3and 32253 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → 𝑃 Btwn ⟨𝑄, 𝑥⟩)
20263adantr 480 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → (𝑃 Btwn ⟨𝑄, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
203201, 202mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → 𝑥 Colinear ⟨𝑃, 𝑄⟩)
204203expr 642 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑄 Btwn ⟨𝑆, 𝑃⟩) → (𝑃 Btwn ⟨𝑆, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
205 simprl 809 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑄 Btwn ⟨𝑆, 𝑃⟩)
2061, 4, 2, 3, 205btwncomand 32247 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑄 Btwn ⟨𝑃, 𝑆⟩)
207 simprr 811 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑆 Btwn ⟨𝑥, 𝑃⟩)
2081, 2, 8, 3, 207btwncomand 32247 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑆 Btwn ⟨𝑃, 𝑥⟩)
2091, 3, 4, 2, 8, 206, 208btwnexchand 32258 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑄 Btwn ⟨𝑃, 𝑥⟩)
21076adantr 480 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
211209, 210mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑥 Colinear ⟨𝑃, 𝑄⟩)
212211expr 642 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑄 Btwn ⟨𝑆, 𝑃⟩) → (𝑆 Btwn ⟨𝑥, 𝑃⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
213198, 204, 2123jaod 1432 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑄 Btwn ⟨𝑆, 𝑃⟩) → ((𝑥 Btwn ⟨𝑃, 𝑆⟩ ∨ 𝑃 Btwn ⟨𝑆, 𝑥⟩ ∨ 𝑆 Btwn ⟨𝑥, 𝑃⟩) → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
214188, 213sylbid 230 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑄 Btwn ⟨𝑆, 𝑃⟩) → (𝑥 Colinear ⟨𝑃, 𝑆⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
215187, 214impbid 202 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑄 Btwn ⟨𝑆, 𝑃⟩) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ 𝑥 Colinear ⟨𝑃, 𝑆⟩))
21683, 155, 2153jaodan 1434 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∨ 𝑃 Btwn ⟨𝑄, 𝑆⟩ ∨ 𝑄 Btwn ⟨𝑆, 𝑃⟩)) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ 𝑥 Colinear ⟨𝑃, 𝑆⟩))
2177, 216syldan 486 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑆 Colinear ⟨𝑃, 𝑄⟩) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ 𝑥 Colinear ⟨𝑃, 𝑆⟩))
218217adantrl 752 . . . . 5 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑆 Colinear ⟨𝑃, 𝑄⟩)) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ 𝑥 Colinear ⟨𝑃, 𝑆⟩))
219218an32s 863 . . . 4 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑆 Colinear ⟨𝑃, 𝑄⟩)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ 𝑥 Colinear ⟨𝑃, 𝑆⟩))
220219rabbidva 3219 . . 3 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑆 Colinear ⟨𝑃, 𝑄⟩)) → {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 Colinear ⟨𝑃, 𝑄⟩} = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 Colinear ⟨𝑃, 𝑆⟩})
221220ex 449 . 2 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) → ((𝑆 ∈ (𝔼‘𝑁) ∧ 𝑆 Colinear ⟨𝑃, 𝑄⟩) → {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 Colinear ⟨𝑃, 𝑄⟩} = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 Colinear ⟨𝑃, 𝑆⟩}))
222 fvline2 32378 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄)) → (𝑃Line𝑄) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 Colinear ⟨𝑃, 𝑄⟩})
2232223adant3 1101 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) → (𝑃Line𝑄) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 Colinear ⟨𝑃, 𝑄⟩})
224223eleq2d 2716 . . 3 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) → (𝑆 ∈ (𝑃Line𝑄) ↔ 𝑆 ∈ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 Colinear ⟨𝑃, 𝑄⟩}))
225 breq1 4688 . . . 4 (𝑥 = 𝑆 → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ 𝑆 Colinear ⟨𝑃, 𝑄⟩))
226225elrab 3396 . . 3 (𝑆 ∈ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 Colinear ⟨𝑃, 𝑄⟩} ↔ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑆 Colinear ⟨𝑃, 𝑄⟩))
227224, 226syl6bb 276 . 2 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) → (𝑆 ∈ (𝑃Line𝑄) ↔ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑆 Colinear ⟨𝑃, 𝑄⟩)))
228 simp1 1081 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) → 𝑁 ∈ ℕ)
229 simp21 1114 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) → 𝑃 ∈ (𝔼‘𝑁))
230 simp3l 1109 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) → 𝑆 ∈ (𝔼‘𝑁))
231 simp3r 1110 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) → 𝑃𝑆)
232 fvline2 32378 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) → (𝑃Line𝑆) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 Colinear ⟨𝑃, 𝑆⟩})
233228, 229, 230, 231, 232syl13anc 1368 . . 3 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) → (𝑃Line𝑆) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 Colinear ⟨𝑃, 𝑆⟩})
234223, 233eqeq12d 2666 . 2 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) → ((𝑃Line𝑄) = (𝑃Line𝑆) ↔ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 Colinear ⟨𝑃, 𝑄⟩} = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 Colinear ⟨𝑃, 𝑆⟩}))
235221, 227, 2343imtr4d 283 1 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) → (𝑆 ∈ (𝑃Line𝑄) → (𝑃Line𝑄) = (𝑃Line𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 382  wa 383  w3o 1053  w3a 1054   = wceq 1523  wcel 2030  wne 2823  {crab 2945  cop 4216   class class class wbr 4685  cfv 5926  (class class class)co 6690  cn 11058  𝔼cee 25813   Btwn cbtwn 25814   Colinear ccolin 32269  Linecline2 32366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-ec 7789  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-sum 14461  df-ee 25816  df-btwn 25817  df-cgr 25818  df-ofs 32215  df-colinear 32271  df-ifs 32272  df-cgr3 32273  df-fs 32274  df-line2 32369
This theorem is referenced by:  linethru  32385
  Copyright terms: Public domain W3C validator