Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lindsrng01 Structured version   Visualization version   GIF version

Theorem lindsrng01 42582
Description: Any subset of a module is always linearly independent if the underlying ring has at most one element. Since the underlying ring cannot be the empty set (see lmodsn0 18924), this means that the underlying ring has only one element, so it is a zero ring. (Contributed by AV, 14-Apr-2019.) (Revised by AV, 27-Apr-2019.)
Hypotheses
Ref Expression
lindsrng01.b 𝐵 = (Base‘𝑀)
lindsrng01.r 𝑅 = (Scalar‘𝑀)
lindsrng01.e 𝐸 = (Base‘𝑅)
Assertion
Ref Expression
lindsrng01 ((𝑀 ∈ LMod ∧ ((#‘𝐸) = 0 ∨ (#‘𝐸) = 1) ∧ 𝑆 ∈ 𝒫 𝐵) → 𝑆 linIndS 𝑀)

Proof of Theorem lindsrng01
Dummy variables 𝑓 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lindsrng01.r . . . . . . . . 9 𝑅 = (Scalar‘𝑀)
2 lindsrng01.e . . . . . . . . 9 𝐸 = (Base‘𝑅)
31, 2lmodsn0 18924 . . . . . . . 8 (𝑀 ∈ LMod → 𝐸 ≠ ∅)
4 fvex 6239 . . . . . . . . . . 11 (Base‘𝑅) ∈ V
52, 4eqeltri 2726 . . . . . . . . . 10 𝐸 ∈ V
6 hasheq0 13192 . . . . . . . . . 10 (𝐸 ∈ V → ((#‘𝐸) = 0 ↔ 𝐸 = ∅))
75, 6ax-mp 5 . . . . . . . . 9 ((#‘𝐸) = 0 ↔ 𝐸 = ∅)
8 eqneqall 2834 . . . . . . . . . 10 (𝐸 = ∅ → (𝐸 ≠ ∅ → 𝑆 linIndS 𝑀))
98com12 32 . . . . . . . . 9 (𝐸 ≠ ∅ → (𝐸 = ∅ → 𝑆 linIndS 𝑀))
107, 9syl5bi 232 . . . . . . . 8 (𝐸 ≠ ∅ → ((#‘𝐸) = 0 → 𝑆 linIndS 𝑀))
113, 10syl 17 . . . . . . 7 (𝑀 ∈ LMod → ((#‘𝐸) = 0 → 𝑆 linIndS 𝑀))
1211adantr 480 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) → ((#‘𝐸) = 0 → 𝑆 linIndS 𝑀))
1312com12 32 . . . . 5 ((#‘𝐸) = 0 → ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) → 𝑆 linIndS 𝑀))
141lmodring 18919 . . . . . . . . 9 (𝑀 ∈ LMod → 𝑅 ∈ Ring)
1514adantr 480 . . . . . . . 8 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) → 𝑅 ∈ Ring)
16 eqid 2651 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
172, 160ring 19318 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (#‘𝐸) = 1) → 𝐸 = {(0g𝑅)})
1815, 17sylan 487 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (#‘𝐸) = 1) → 𝐸 = {(0g𝑅)})
19 simpr 476 . . . . . . . . . 10 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) → 𝑆 ∈ 𝒫 𝐵)
2019adantr 480 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (#‘𝐸) = 1) → 𝑆 ∈ 𝒫 𝐵)
2120adantl 481 . . . . . . . 8 ((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (#‘𝐸) = 1)) → 𝑆 ∈ 𝒫 𝐵)
22 snex 4938 . . . . . . . . . . . . . 14 {(0g𝑅)} ∈ V
2320, 22jctil 559 . . . . . . . . . . . . 13 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (#‘𝐸) = 1) → ({(0g𝑅)} ∈ V ∧ 𝑆 ∈ 𝒫 𝐵))
2423adantl 481 . . . . . . . . . . . 12 ((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (#‘𝐸) = 1)) → ({(0g𝑅)} ∈ V ∧ 𝑆 ∈ 𝒫 𝐵))
25 elmapg 7912 . . . . . . . . . . . 12 (({(0g𝑅)} ∈ V ∧ 𝑆 ∈ 𝒫 𝐵) → (𝑓 ∈ ({(0g𝑅)} ↑𝑚 𝑆) ↔ 𝑓:𝑆⟶{(0g𝑅)}))
2624, 25syl 17 . . . . . . . . . . 11 ((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (#‘𝐸) = 1)) → (𝑓 ∈ ({(0g𝑅)} ↑𝑚 𝑆) ↔ 𝑓:𝑆⟶{(0g𝑅)}))
27 fvex 6239 . . . . . . . . . . . . . 14 (0g𝑅) ∈ V
2827fconst2 6511 . . . . . . . . . . . . 13 (𝑓:𝑆⟶{(0g𝑅)} ↔ 𝑓 = (𝑆 × {(0g𝑅)}))
29 fconstmpt 5197 . . . . . . . . . . . . . 14 (𝑆 × {(0g𝑅)}) = (𝑥𝑆 ↦ (0g𝑅))
3029eqeq2i 2663 . . . . . . . . . . . . 13 (𝑓 = (𝑆 × {(0g𝑅)}) ↔ 𝑓 = (𝑥𝑆 ↦ (0g𝑅)))
3128, 30bitri 264 . . . . . . . . . . . 12 (𝑓:𝑆⟶{(0g𝑅)} ↔ 𝑓 = (𝑥𝑆 ↦ (0g𝑅)))
32 eqidd 2652 . . . . . . . . . . . . . . . 16 (((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (#‘𝐸) = 1)) ∧ 𝑣𝑆) → (𝑥𝑆 ↦ (0g𝑅)) = (𝑥𝑆 ↦ (0g𝑅)))
33 eqidd 2652 . . . . . . . . . . . . . . . 16 ((((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (#‘𝐸) = 1)) ∧ 𝑣𝑆) ∧ 𝑥 = 𝑣) → (0g𝑅) = (0g𝑅))
34 simpr 476 . . . . . . . . . . . . . . . 16 (((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (#‘𝐸) = 1)) ∧ 𝑣𝑆) → 𝑣𝑆)
35 fvexd 6241 . . . . . . . . . . . . . . . 16 (((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (#‘𝐸) = 1)) ∧ 𝑣𝑆) → (0g𝑅) ∈ V)
3632, 33, 34, 35fvmptd 6327 . . . . . . . . . . . . . . 15 (((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (#‘𝐸) = 1)) ∧ 𝑣𝑆) → ((𝑥𝑆 ↦ (0g𝑅))‘𝑣) = (0g𝑅))
3736ralrimiva 2995 . . . . . . . . . . . . . 14 ((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (#‘𝐸) = 1)) → ∀𝑣𝑆 ((𝑥𝑆 ↦ (0g𝑅))‘𝑣) = (0g𝑅))
3837a1d 25 . . . . . . . . . . . . 13 ((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (#‘𝐸) = 1)) → (((𝑥𝑆 ↦ (0g𝑅)) finSupp (0g𝑅) ∧ ((𝑥𝑆 ↦ (0g𝑅))( linC ‘𝑀)𝑆) = (0g𝑀)) → ∀𝑣𝑆 ((𝑥𝑆 ↦ (0g𝑅))‘𝑣) = (0g𝑅)))
39 breq1 4688 . . . . . . . . . . . . . . 15 (𝑓 = (𝑥𝑆 ↦ (0g𝑅)) → (𝑓 finSupp (0g𝑅) ↔ (𝑥𝑆 ↦ (0g𝑅)) finSupp (0g𝑅)))
40 oveq1 6697 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑥𝑆 ↦ (0g𝑅)) → (𝑓( linC ‘𝑀)𝑆) = ((𝑥𝑆 ↦ (0g𝑅))( linC ‘𝑀)𝑆))
4140eqeq1d 2653 . . . . . . . . . . . . . . 15 (𝑓 = (𝑥𝑆 ↦ (0g𝑅)) → ((𝑓( linC ‘𝑀)𝑆) = (0g𝑀) ↔ ((𝑥𝑆 ↦ (0g𝑅))( linC ‘𝑀)𝑆) = (0g𝑀)))
4239, 41anbi12d 747 . . . . . . . . . . . . . 14 (𝑓 = (𝑥𝑆 ↦ (0g𝑅)) → ((𝑓 finSupp (0g𝑅) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀)) ↔ ((𝑥𝑆 ↦ (0g𝑅)) finSupp (0g𝑅) ∧ ((𝑥𝑆 ↦ (0g𝑅))( linC ‘𝑀)𝑆) = (0g𝑀))))
43 fveq1 6228 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑥𝑆 ↦ (0g𝑅)) → (𝑓𝑣) = ((𝑥𝑆 ↦ (0g𝑅))‘𝑣))
4443eqeq1d 2653 . . . . . . . . . . . . . . 15 (𝑓 = (𝑥𝑆 ↦ (0g𝑅)) → ((𝑓𝑣) = (0g𝑅) ↔ ((𝑥𝑆 ↦ (0g𝑅))‘𝑣) = (0g𝑅)))
4544ralbidv 3015 . . . . . . . . . . . . . 14 (𝑓 = (𝑥𝑆 ↦ (0g𝑅)) → (∀𝑣𝑆 (𝑓𝑣) = (0g𝑅) ↔ ∀𝑣𝑆 ((𝑥𝑆 ↦ (0g𝑅))‘𝑣) = (0g𝑅)))
4642, 45imbi12d 333 . . . . . . . . . . . . 13 (𝑓 = (𝑥𝑆 ↦ (0g𝑅)) → (((𝑓 finSupp (0g𝑅) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀)) → ∀𝑣𝑆 (𝑓𝑣) = (0g𝑅)) ↔ (((𝑥𝑆 ↦ (0g𝑅)) finSupp (0g𝑅) ∧ ((𝑥𝑆 ↦ (0g𝑅))( linC ‘𝑀)𝑆) = (0g𝑀)) → ∀𝑣𝑆 ((𝑥𝑆 ↦ (0g𝑅))‘𝑣) = (0g𝑅))))
4738, 46syl5ibrcom 237 . . . . . . . . . . . 12 ((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (#‘𝐸) = 1)) → (𝑓 = (𝑥𝑆 ↦ (0g𝑅)) → ((𝑓 finSupp (0g𝑅) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀)) → ∀𝑣𝑆 (𝑓𝑣) = (0g𝑅))))
4831, 47syl5bi 232 . . . . . . . . . . 11 ((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (#‘𝐸) = 1)) → (𝑓:𝑆⟶{(0g𝑅)} → ((𝑓 finSupp (0g𝑅) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀)) → ∀𝑣𝑆 (𝑓𝑣) = (0g𝑅))))
4926, 48sylbid 230 . . . . . . . . . 10 ((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (#‘𝐸) = 1)) → (𝑓 ∈ ({(0g𝑅)} ↑𝑚 𝑆) → ((𝑓 finSupp (0g𝑅) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀)) → ∀𝑣𝑆 (𝑓𝑣) = (0g𝑅))))
5049ralrimiv 2994 . . . . . . . . 9 ((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (#‘𝐸) = 1)) → ∀𝑓 ∈ ({(0g𝑅)} ↑𝑚 𝑆)((𝑓 finSupp (0g𝑅) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀)) → ∀𝑣𝑆 (𝑓𝑣) = (0g𝑅)))
51 oveq1 6697 . . . . . . . . . . 11 (𝐸 = {(0g𝑅)} → (𝐸𝑚 𝑆) = ({(0g𝑅)} ↑𝑚 𝑆))
5251raleqdv 3174 . . . . . . . . . 10 (𝐸 = {(0g𝑅)} → (∀𝑓 ∈ (𝐸𝑚 𝑆)((𝑓 finSupp (0g𝑅) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀)) → ∀𝑣𝑆 (𝑓𝑣) = (0g𝑅)) ↔ ∀𝑓 ∈ ({(0g𝑅)} ↑𝑚 𝑆)((𝑓 finSupp (0g𝑅) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀)) → ∀𝑣𝑆 (𝑓𝑣) = (0g𝑅))))
5352adantr 480 . . . . . . . . 9 ((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (#‘𝐸) = 1)) → (∀𝑓 ∈ (𝐸𝑚 𝑆)((𝑓 finSupp (0g𝑅) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀)) → ∀𝑣𝑆 (𝑓𝑣) = (0g𝑅)) ↔ ∀𝑓 ∈ ({(0g𝑅)} ↑𝑚 𝑆)((𝑓 finSupp (0g𝑅) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀)) → ∀𝑣𝑆 (𝑓𝑣) = (0g𝑅))))
5450, 53mpbird 247 . . . . . . . 8 ((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (#‘𝐸) = 1)) → ∀𝑓 ∈ (𝐸𝑚 𝑆)((𝑓 finSupp (0g𝑅) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀)) → ∀𝑣𝑆 (𝑓𝑣) = (0g𝑅)))
55 simpl 472 . . . . . . . . . . 11 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (#‘𝐸) = 1) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵))
5655ancomd 466 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (#‘𝐸) = 1) → (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod))
5756adantl 481 . . . . . . . . 9 ((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (#‘𝐸) = 1)) → (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod))
58 lindsrng01.b . . . . . . . . . 10 𝐵 = (Base‘𝑀)
59 eqid 2651 . . . . . . . . . 10 (0g𝑀) = (0g𝑀)
6058, 59, 1, 2, 16islininds 42560 . . . . . . . . 9 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod) → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸𝑚 𝑆)((𝑓 finSupp (0g𝑅) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀)) → ∀𝑣𝑆 (𝑓𝑣) = (0g𝑅)))))
6157, 60syl 17 . . . . . . . 8 ((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (#‘𝐸) = 1)) → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸𝑚 𝑆)((𝑓 finSupp (0g𝑅) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀)) → ∀𝑣𝑆 (𝑓𝑣) = (0g𝑅)))))
6221, 54, 61mpbir2and 977 . . . . . . 7 ((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (#‘𝐸) = 1)) → 𝑆 linIndS 𝑀)
6318, 62mpancom 704 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (#‘𝐸) = 1) → 𝑆 linIndS 𝑀)
6463expcom 450 . . . . 5 ((#‘𝐸) = 1 → ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) → 𝑆 linIndS 𝑀))
6513, 64jaoi 393 . . . 4 (((#‘𝐸) = 0 ∨ (#‘𝐸) = 1) → ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) → 𝑆 linIndS 𝑀))
6665expd 451 . . 3 (((#‘𝐸) = 0 ∨ (#‘𝐸) = 1) → (𝑀 ∈ LMod → (𝑆 ∈ 𝒫 𝐵𝑆 linIndS 𝑀)))
6766com12 32 . 2 (𝑀 ∈ LMod → (((#‘𝐸) = 0 ∨ (#‘𝐸) = 1) → (𝑆 ∈ 𝒫 𝐵𝑆 linIndS 𝑀)))
68673imp 1275 1 ((𝑀 ∈ LMod ∧ ((#‘𝐸) = 0 ∨ (#‘𝐸) = 1) ∧ 𝑆 ∈ 𝒫 𝐵) → 𝑆 linIndS 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 382  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wral 2941  Vcvv 3231  c0 3948  𝒫 cpw 4191  {csn 4210   class class class wbr 4685  cmpt 4762   × cxp 5141  wf 5922  cfv 5926  (class class class)co 6690  𝑚 cmap 7899   finSupp cfsupp 8316  0cc0 9974  1c1 9975  #chash 13157  Basecbs 15904  Scalarcsca 15991  0gc0g 16147  Ringcrg 18593  LModclmod 18911   linC clinc 42518   linIndS clininds 42554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-hash 13158  df-0g 16149  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-grp 17472  df-ring 18595  df-lmod 18913  df-lininds 42556
This theorem is referenced by:  lindszr  42583
  Copyright terms: Public domain W3C validator